一个m*n的矩阵。
该矩阵的第一列是a^b,(a+1)^b,.....(a + n - 1)^b
第二列是a^(b+1),(a+1)^(b+1),.....(a + n - 1)^(b+1)
.......
第m列是a^(b + m - 1),(a+1)^(b + m - 1),.....(a + n - 1)^(b + m - 1)
(a^b表示a的b次方)
下面是一个4*4的矩阵:
2^2=4, 2^3=8, 2^4=16, 2^5=32
3^2=9, 3^3=27, 3^4=81, 3^5=243
4^2=16, 4^3=64, 4^4=256, 4^5=1024
5^2=25, 5^3=125, 5^4=625, 5^5=3125
问这个矩阵里有多少不重复的数(比如4^3 = 8^2,这样的话就有重复了)
2^2=4, 2^3=8, 2^4=16, 2^5=32
3^2=9, 3^3=27, 3^4=81, 3^5=243
4^2=16, 4^3=64, 4^4=256, 4^5=1024
m = 4, n = 3, a = 2, b = 2。其中2^4与4^2是重复的元素。
Input
输入数据包括4个数:m,n,a,b。中间用空格分隔。m,n为矩阵的长和宽(2 <= m,n <= 100)。a,b为矩阵的第1个元素,a^b(2 <= a , b <= 100)。
Output
输出不重复元素的数量。
Input示例
4 3 2 2
Output示例
11
既然矩阵元素可能取到很大的值,那么对矩阵元素求对数再找不相等的元素就可以了,就是不知道为什么底数是2能过,是e或别的就不行..........y有大佬知道么QAQ
#include <iostream>
#include <cmath>
#include <set>
#include <algorithm>
using namespace std;
int main()
{
int m,n,a,b,i,j;
cin>>m>>n>>a>>b;
set<double>set1;
for(i=0; i<n; ++i)
{
for(j=0; j<m; ++j)
{
double c=(b+j)*log2(a+i*1.0);
set1.insert(c);
}
}
cout<<set1.size()<<endl;
}