1 研究背景
现有基于伪标签的半监督学习方法存在的问题:
- 伪标签 → 存在确认偏差(Confirmation Bias)
- 分布外噪声数据 → 影响模型的判别能力
- 是否存在一种通用增益方法,可适用于各基于伪标签的半监督方法?
- MixMatch[1](NIPS, 2019):数据Mixup → 预测锐化(Sharpen)
- FixMatch[2](NIPS, 2020):置信度阈值,弱增强 → 生成伪标签 → 监督强增强
2 关键卖点
- 提出一套缓解确认偏差(Confirmation Bias)的通用架构:
- 对于可靠的分布内数据(In-distribution Data):使用有监督对比学习。
- 分布内数据:指无标记数据集不包含新类别,或具有平衡的数据分布的数据。
- 对于存在噪声的分布外数据(Out-of-distribution Data):对特征进行无监督对比学习。
- 分布外数据:指无标记数据集包含未知类别,或具有不平衡的数据分布的数据。
- 对于可靠的分布内数据(In-distribution Data):使用有监督对比学习。
- 针对伪标签存在的噪声问题:进行权重分配。
3 主要架构
- 整体架构目标:最小化相似性矩阵(Feature Affinity)和目标矩阵(Target Matrix)之间的有监督对比损失
,无标签的强增强样本与弱增强样本生成的伪标签之间的交叉熵损失
,以及有标签样本的交叉熵损失
。即
。
- 对于有标签样本:采用图像的弱增强视图进行有监督学习,优化交叉熵损失。
-
通过预测层(Cls Head),计算交叉熵损失:
- 输入:
,其中
为第
张图片,
为该图片对应的
向量,
为采样的一个批量大小。
- 输出:
,模型对输入
产生的预测类别分布。
-

- 对于无标签样本:
- 输入:
,其中
是一个超参数,权衡有标签样本集
和无标签样本集
的相
- 输入: