Poi2010 Monotonicity 2

树状数组优化dp

可以证明最优解一定是通过之前的最优转移过来的,所以每一个点只需要保存以该节点为结尾的最长长度即可

对于不同符号,等于号维护数组,大于小于维护树状数组

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#define N 500005
using namespace std;
int n,m,a[N],f[N],ans,c[2][2*N],ff[2*N],maxn;
char s[N];
int lowbit(int x){
    return x&(-x);
}
void update(int k,int x,int y){
    while(x<=maxn){
        c[k][x]=max(c[k][x],y);
        x+=lowbit(x);
    }
}
int query(int k,int x){
    int ans=0;
    while(x){
        ans=max(c[k][x],ans);
        x-=lowbit(x);
    }
    return ans;
}
int main()
{
    //freopen("mot.in","r",stdin);
    //freopen("mot.out","w",stdout);
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        maxn=max(maxn,a[i]);
    }
    for(int i=1;i<=m;i++){
        s[i]=getchar();
        while(s[i]!='<'&&s[i]!='>'&&s[i]!='=')
        s[i]=getchar();
    }
    int x1,x2,x3; char ch;
    for(int i=1;i<=n;i++){
        x1=query(0,a[i]-1);
        x2=query(1,maxn-a[i]);
        x3=ff[a[i]];
        f[i]=max(x1,max(x2,x3))+1;
        ch=s[(f[i]-1)%m+1];
        if(ch=='<') update(0,a[i],f[i]);
        if(ch=='>') update(1,maxn-a[i]+1,f[i]);
        if(ch=='=') ff[a[i]]=max(ff[a[i]],f[i]);
    }
    for(int i=1;i<=n;i++){
        //printf("%d  %d\n",i,f[i]);
        ans=max(ans,f[i]);
    }
    printf("%d\n",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值