双指针
利用双指针的搜索,实质上双指针那部分很简单
记录本题主要是为了记录思想
题目
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
示例 2:
输入:nums = []
输出:[]
示例 3:
输入:nums = [0]
输出:[]
题解
先逐步分析一个个问题的解法
1.如何得到符合a + b + c = 0
条件的数?
可以转换一下问题:-a = b + c ,我们可以每次都选定一个a,如然后使用双指针去寻找对应的b、c
想要优化查找的进行,显然一个排序过的数组对我们是有利的
而且已排序数组对下一个问题的解决也有利
2.如何让答案“不可以包含重复的三元组”
简单而言就是固定序列
在进行枚举的时候,外面只要保证自己的答案只会搜索到(a,b,c)的排序即可,也就是避免 (b,a,c) (c,a,b) 之类的答案出现
由于我们的数组是已排序数组,所以解决这个问题比想象中简单,我们需要做到两点:
1.检测a,保证每个a只取到过一个数字的值。比如我们在循环中利用i来枚举i,在每次更新后,只要检测i
与i-1
的关系即可。如果相同就i++去下一位
2.检测b、c,也就是两个双指针也是同理的,更新left/right之后去检测它们和left-1,rgiht+1的关系就好了
如此一来,我们就完成了去重,保证了答案的唯一性
3.其它
基于上面两点,还有其它地方可以优化。
首先是a,如果我们得到的a(假设数组是从小到大排列)是一个大于0的数字,那么我们就可以跳出循环了,毕竟后面的b、c一定不好小于它
在第一重循环就检测a的数值是否重复,以此来节省时间
现在主要的问题已经解决了,接下来按步骤一步步解题就好了
代码如下,注释只简单写了对应的步骤思路
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> ans = new ArrayList<>();
if (nums == null || nums.length <= 2) return ans;
//Step1:排序,然后将 a + b + c = 0 转变为-a = b+c 的问题
Arrays.sort(nums);
//Step2:大循环,把a从头到尾选择过去(从大到小)
for(int i = 0 ; i < nums.length -2 ;i++){
if(nums[i] > 0 )
break ; //所以数都大于0还找个锤子
if (i > 0 && nums[i] == nums[i - 1])
continue; //对于相同答案的去重
//Step3:利用双指针搜 b+c = -a
int left = i+1;
int right = nums.length - 1;
while(left<right){
if(nums[left]+nums[right]+nums[i] == 0){
ans.add(new ArrayList<>(Arrays.asList(nums[i], nums[left], nums[right])));
//加入答案
//更新
left++;
right--;
//在搜索中遇到相同元素的去重
while (left < right && nums[left] == nums[left - 1])
left++;
while (left < right && nums[right] == nums[right + 1])
right--;
}else{
//不成立情况下的更新
if(nums[left]+nums[right]+nums[i] < 0 )
left++ ;
if(nums[left]+nums[right]+nums[i] > 0)
right--;
}
}
}
return ans ;
}
}