1. 什么是迁移学习?
迁移学习是一种机器学习技术,其核心思想是将从一个任务(通常是数据丰富的大规模任务)中学到的知识或模型,应用到另一个相关但数据较少的新任务上,以提高学习效率和性能。它特别适用于数据稀缺或标注成本高昂的场景。
定义
迁移学习的核心在于知识迁移。假设我们有两个任务:
- 源任务(Source Task):通常有大量标注数据,模型在这个任务上已经训练得很好。
- 目标任务(Target Task):数据量较少或任务较为特殊,需要利用源任务的知识来提升性能。
迁移学习的目标是通过在源任务上学习到的特征、权重或模型,加速目标任务的训练或提升其性能。
为什么需要迁移学习?
在传统的机器学习中,每个任务通常需要从头训练一个模型,这要求:
- 大量标注数据(标注成本高)。
- 强大的计算资源(训练时间长)。
- 针对每个任务设计特定的模型(开发成本高)。
但在现实世界中,很多任务的数据量不足以支持从头训练一个深度模型。例如:
- 医疗图像分类:标注的医学图像数据非常少。
- 特定领域的语音识别:某些方言或语言的数据稀缺。
- 小型企业的个性化推荐系统:用户数据有限。
迁移学习通过复用已有的模型或知识,解决了这些问题,显著降低了数据和计算需求。
2. 迁移学习的理论基础
迁移学习的理论基础可以从以下几个方面理解:
2.1 源域和目标域
迁移学习涉及两个域:
- 源域(Source Domain, D s \mathcal{D}_s Ds):包含大量数据和已训练好的模型,数据分布为 P s ( X , Y ) P_s(X, Y) Ps(X,Y)。
- 目标域(Target Domain, D t \mathcal{D}_t Dt):数据较少,数据分布为 P t ( X , Y ) P_t(X, Y) Pt(X,Y)。
迁移学习的目标是利用源域的知识来提升目标域任务的性能。通常,源域和目标域的数据分布不同(即 P s ≠ P t P_s \neq P_t Ps=Pt),这引入了**域偏移(Domain Shift)**问题。
2.2 任务和模型
- 源任务(Source Task, T s \mathcal{T}_s T