1. 引言
强化学习(Reinforcement Learning, RL)是一种通过智能体与环境交互、学习最优决策的机器学习方法,广泛应用于游戏、机器人控制、自动驾驶和推荐系统等领域。RL算法对超参数极为敏感,调参不当可能导致训练失败、收敛缓慢或性能不佳。本文档提供一份详尽的强化学习调参指南,涵盖环境设计、超参数优化、监控与调试的全流程,特别深入分析回报曲线的解读与应对策略。文档适合初学者,结合理论、实践案例和调试技巧,力求全面且实用。
1.1 强化学习核心概念
组件 |
描述 |
智能体(Agent) |
学习和执行决策的实体。 |
环境(Environment) |
智能体交互的外部系统,提供状态和奖励。 |
状态(State, s) |
环境当前时刻的描述,可能部分可观察。 |
行动(Action, a) |
智能体在状态下执行的操作,分为离散或连续。 |
奖励(Reward, r) |
环境对行动的反馈,驱动学习。 |
策略(Policy, π) |
从状态到行动的映射,决定行为。 |
价值函数(Value Function, V/Q) |
估计状态或状态-行动对的长期回报。 |
折扣因子(Gamma, γ) |
控制未来奖励的权重,0 ≤ γ ≤ 1。 |
回放缓冲区(Replay Buffer) |
存储历史经验,供离线算法使用。 |
1.2 常见强化学习算法
类别 |
算法 |
特点 |
基于价值 |
Q-Learning, SARSA, DQN |
学习状态-行动价值,适合离散动作。 |
基于策略 |
REINFORCE, PPO, TRPO |
直接优化策略,适合连续动作。 |
Actor-Critic |
A2C, A3C, SAC, DDPG |
结合价值和策略,平衡稳定性和效率。 |
模型基 |
MuZero, World Models |
学习环境模型,提高样本效率。 |
1.3 调参的重要性
RL的训练过程受超参数(如学习率、折扣因子、探索参数)影响显著。研究(Mnih et al., 2015; Schulman et al., 2017)表明,超参数设置不当可能导致:
- 训练不稳定,回报剧烈波动。
- 收敛到次优策略或完全失败。
- 样本效率低下,需数百万交互。
系统化的调参策略、监控指标和调试方法是成功应用RL的关键。
2. 调参前的准备工作
2.1 理解任务与环境
- 任务目标:明确奖励函数和终止条件。例如,机器人导航以到达目标为正奖励,碰撞或超时为负奖励。
- 状态空间:确保状态包含足够信息(完全或部分可观察)。例如,CartPole需要位置、速度、角度和角速度。
- 动作空间:定义动作类型(离散如左/右,连续如力矩)及其范围。
- 环境动态:了解随机性(如噪声)、转移概率和奖励分布。
2.2 选择合适的算法
任务特性 |
推荐算法 |
离散动作 |
DQN, PPO, A2C |
连续动作 |
SAC, DDPG, PPO |
高维输入(如图像) |
DQN, PPO + CNN |
稀疏奖励 |
SAC, HER |
实时性要求 |
PPO, A2C |
2.3 环境标准化
- 观察归一化:将状态值标准化为均值0、标准差1。例如,图像像素除以255,物理量(如速度)归一到[-1, 1]。
- 动作归一化:连续动作缩放到[-1, 1],便于神经网络优化。
- 奖励缩放:控制奖励范围(如[-1, 1]),避免极端值干扰梯度。
- 环境验证:使用Stable Baselines3的
check_env
检查Gym环境接口,确保状态、动作和奖励定义正确。
2.4 基准测试
- 随机策略:运行随机策略,验证任务可解性。例如,CartPole随机策略应偶尔获得正奖励。
- 简单任务:在MountainCar或CartPole上测试算法实现。
- 基