1. P1060 开心的金明(https://www.luogu.org/problem/show?pid=1060)
题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:
v[j1]w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中为乘号)
请你帮助金明设计一个满足要求的购物单。
输入输出格式
输入格式:
输入的第1行,为两个正整数,用一个空格隔开:
N m (其中N(<30000)表示总钱数,m(<25)为希望购买物品的个数。)
从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有2个非负整数
v p (其中v表示该物品的价格(v<=10000),p表示该物品的重要度(1~5))
输出格式:
输出只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<100000000)。
输入输出样例
输入样例#1:
1000 5
800 2
400 5
300 5
400 3
200 2
输出样例#1:
3900
说明
NOIP 2006 普及组 第二题
思路:基本01背包问题与采药一题基本相同 ,一维dp。可以用结构体代替c,w数组
价值是重要度与价格的乘积
参考程序
#include<iostream>
#define N 30005
#define M 26
using namespace std;
int n,m;
long long dp[N];//注意数组的大小!我因为把n写成m,RE 10个点
struct Dubai{//存物品的结构体
int p;//重要度
int v;//价格
}idom[M];
int main()
{
ios::sync_with_stdio(false);//读入优化
cin>>n>>m;
for(int i=1;i<=m;i++)
cin>>idom[i].v>>idom[i].p;
for(int i=1;i<=m;i++)
for(int j=n;j>=idom[i].v;j--)
dp[j]=max(dp[j],dp[j-idom[i].v]+idom[i].p*idom[i].v);
/*idom[i].p*idom[i].v看做价值,当然可以在读入每个之后
立刻将p与v相乘*/
cout<<dp[n]; //输出,收工
return 0;
2.P1048 采药
题目描述
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
输入输出格式
输入格式:
输入文件medic.in的第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
输出格式:
输出文件medic.out包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
输入输出样例
输入样例#1:
70 3
71 100
69 1
1 2
输出样例#1:
3
说明
对于30%的数据,M <= 10;
对于全部的数据,M <= 100。
NOIP2005普及组第三题
解析:
01背包模板题,但是可以不用两个数组,直接开一个结构体
存下药的采摘时间价值。
参考程序:
#include<cstdio>
#include<iostream>//我懒得手写max
using namespace std;
int t,m,dp[1005][1005];
struct Viena{//存药的结构体
int time,value;
}medi[101];
int main()
{
scanf("%d%d",&t,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&medi[i].time,&medi[i].value);
}
for(int i=1;i<=m;i++)
for(int j=t;j>0;j--)
{
if(medi[i].time<=j) dp[i][j]=max(dp[i-1][j],dp[i-1][j-medi[i].time]+medi[i].value);
else dp[i][j]=dp[i-1][j];//状态转移方程
}
printf("%d",dp[m][t]);
return 0; //收工
}