一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向右 -> 向下
- 向右 -> 向下 -> 向右
- 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28
提示:
1 <= m, n <= 100
题目数据保证答案小于等于 2 * 10 ^ 9
int uniquePaths(int m, int n){
int cnt[100][100];
int h,l;
for(h=0;h<m;h++)
cnt[h][0]=1;
for(l=0;l<n;l++)
cnt[0][l]=1;
for(h=1;h<m;h++){
for(l=1;l<n;l++){
cnt[h][l]=cnt[h-1][l]+cnt[h][l-1];
}
}
return cnt[m-1][n-1];
}
这道题目的思路就是当你想得到最右下的格子的可行路线条数时,它其实就是等于它上方格子可行路线数和左方可行路线数相加的和,由此可以一步一步拆分为一个个的小表格,最后拆分到初始格子。