70.爬楼梯(进阶)
分析:基本动态规划转换为完全背包,因为1、2 两种上楼梯方式是无限选择的
思路:
- 1. j 表示 容量为 j 时,装满有dp[j]种方法
- 2. dp[j]+=dp[j-nums[i]]
- 3. 初始化 dp[0]=1,dp[1]=1
- 4. 遍历顺序:外层遍历容量 内层遍历物品
class Solution {
public:
int climbStairs(int n) {
vector<int>dp(n+1,0);
dp[0]=dp[1]=1;
for(int i=2;i<=n;i++){
for(int j=1;j<=2;j++){
dp[i]+=dp[i-j];
}
}
return dp[n];
}
};
322.零钱兑换
分析:硬币无限,组合成金额 -> 完全背包(组合)
思路:
- 1.dp存储:金额为 j 时,有 dp[j] 种方法
- 2.dp[j]=min(dp[j],dp[j-coins[i]]+1)
- 3.dp[0]=0
- 4.遍历顺序:外层遍历硬币,内层遍历容量
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int>dp(amount+1,INT_MAX);
dp[0]=0;
for(int i=0;i<coins.size();i++){
for(int j=coins[i];j<=amount;j++){
if(dp[j-coins[i]]!=INT_MAX) dp[j]=min(dp[j],dp[j-coins[i]]+1);
}
}
if(dp[amount]==INT_MAX) return -1;
return dp[amount];
}
};
279.完全平方数
思路:
-
1.dp存储: 容量为 j 时,装满的最少使用数字为dp[j]种方法
-
2.dp[j]=min(dp[j],dp[j-i*i]+1)
-
3.初始化:dp[0]=0 INT_MAX
-
4.遍历顺序:外层遍历数字,内层遍历容量
class Solution {
public:
int numSquares(int n) {
vector<int>dp(n+1,INT_MAX);
dp[0]=0;
for(int i=1;i*i<=n;i++){
for(int j=i*i;j<=n;j++){
dp[j]=min(dp[j],dp[j-i*i]+1);
}
}
return dp[n];
}
};