题目描述:
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2
示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1
示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4
示例 4:
输入: nums = [1,3,5,6], target = 0
输出: 0
示例 5:
输入: nums = [1], target = 0
输出: 0
提示:
- 1 <= nums.length <= 104
- -104 <= nums[i] <= 104
- nums 为无重复元素的升序排列数组
- -104 <= target <= 104
题解:
方法一:暴力解法:遍历。
//暴力解法
class Solution {
public int searchInsert(int[] nums, int target) {
for (int i = 0; i < nums.length; i++) {
if (target <= nums[i]) {
return i;
}
}
//target比数组中所有数大应插入在最后面
return nums.length;
}
}
时间复杂度:O(n)
空间复杂度:O(1)
方法二:二分法
//二分法
class Solution {
public int searchInsert(int[] nums, int target) {
int n = nums.length;
int left = 0, right = n-1;
while (left <= right){
int mid = left + (right - left)/2;
if(target == nums[mid])
return mid;
else if(target > nums[mid])
left = mid + 1;
else
right = mid - 1;
}
return left;
}
}
时间复杂度:O(log n)
空间复杂度:O(1)
用mid = left + (right - left)/2;而不是mid = (left + right)/2;是因为后者left+right更易越界。