题目描述:
给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):
- 0 <= a, b, c, d < n
- a、b、c 和 d 互不相同
- nums[a] + nums[b] + nums[c] +nums[d] == target
你可以按 任意顺序 返回答案 。
示例 1:
输入:nums = [1,0,-1,0,-2,2], target = 0
输出:[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
示例 2:
输入:nums = [2,2,2,2,2], target = 8
输出:[[2,2,2,2]]
提示:
- 1 <= nums.length <= 200
- -109 <= nums[i] <= 109
- -109 <= target <= 109
思路:
将复杂的问题转化为小些的问题,和三数之和的解法类似,较难的是需要思考如何去掉重复的。先用一层for将四数之和转化为三数之和问题,再一层for循环转化为两数之和问题;
另需要注意的是要考虑极端的测试用例,如:
输入: [0,0,0,1000000000,1000000000,1000000000,1000000000]
1000000000
或
[0,0,0,-1000000000,-1000000000,-1000000000,-1000000000]
-1000000000
容易溢出。
class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
int length = nums.length;
List<List<Integer>> res = new ArrayList<List<Integer>>();
if (nums == null || length < 4)
return res;
Arrays.sort(nums);//排序升序
for (int i = 0; i < length - 3; i++) {
//避免重复
if (i > 0 && nums[i] == nums[i-1]) continue;
//从i开始的连续四个数和大于target,则之后的遍历一定大于target,所以不用继续遍历,跳出循环
//nums[i] + nums[i+1] + nums[i+2] + nums[i+3]的写法会溢出
if (nums[i] + nums[i+1] > target - nums[i+3] -nums[i+2]) break;
//i与最后三个数(即最大的3个数)和已经小于target,则内层循环后结果一定小于target,所以不必继续此轮循环
if (nums[i] + nums[length-1] < target - nums[length-2] - nums[length-3]) continue;//同样注意避免溢出
int threeSum = target - nums[i];//剩下三数之和
for (int j = i + 1; j < length - 2; j++){
//和i层循环同理
if (j > i + 1 && nums[j] == nums[j-1]) continue;
if(nums[j] + nums[j+1] > threeSum - nums[j+2]) break;
if(nums[j] + nums[length-1] < threeSum - nums[length-2]) continue;
int left = j + 1;
int right = length - 1;
int twoSum = threeSum - nums[j];//剩下两数之和
//双指针
while (left < right) {
if (nums[left] + nums[right] == twoSum) {
res.add(Arrays.asList(nums[i], nums[j], nums[left], nums[right]));
while (left < right && nums[left] == nums[left+1])
left++;//避免重复
while (left < right && nums[right] == nums[right-1])
right--;//避免重复
left++;
right--;
} else if (nums[left] + nums[right] < twoSum) {
left++;//比twoSum小,右移left以增大和
} else {
right--;
}
}//while
}//for(j)
}//for(i)
return res;
}//fourSum()
}//class Solution
时间复杂度:O(n^3)
空间复杂度:O(log n)