Spark中map和flatMap的理解

笔记:本文记录了map和flatMap的区别

函数原型

1.data.map(function)

该函数是data的方法,传入的参数为一个函数(function),作用:对data中的每一个项进行function操作,并返回RDD,该RDD的项的数目等于原data的项的数目。

2.data.flatMap(function)

flatMap方法和map方法类似,但是每个输入项可成为0个或多个输出项,实际上是在map的基础上进行了扁平化处理。

形象化理解map和flatMap:


3 map接龙:连续调用map方法

形式如下:data.map().map().map()

map部分示例代码(来源:《Spark MLlib 机器学习实战(第二版)》 -王晓华 P59):

val rdd=sc.textFile(“c://test.txt”)//创建RDD文件路径

.map(_.split(' '))//按“ ”分割

.map(_.toDouble))//转换成Double类型

.map(line=>Vectors.dense(line)//转换成Vector格式

参考文章:https://www.sogou.com/link?url=hedJjaC291MxDp_bleWQj5pP-YHblviUM3un4Y7gPgD-TMBYoIJyGI_2LFoNtBLn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值