一阶RC低通滤波电路微分方程式推导
RC一阶低通滤波电路图如下图所示,
根据基尔霍夫电流定理,由图可知,
i = C d u 0 d t \begin{aligned} i=C\frac{du_0}{dt} \end{aligned} i=Cdtdu0
根据基尔霍夫电压定理,由图可知,
R C d u 0 d t + u 0 = u i \begin{aligned} \\RC\frac{du_0}{dt}+u_0&=u_i \end{aligned} RCdtdu0+u0=ui
将式子化为一阶线性微分方程,可得
d u 0 d t + 1 R C u 0 = u i R C \begin{aligned} \\\frac{du_0}{dt}+\frac{1}{RC}u_0&=\frac{u_i}{RC} \end{aligned} dtdu0+RC1u0=RCui
一阶线性方程微分的推导
接下来我们复习一下一阶线性微分方程通解的推导。
形如
d y d x + P ( x ) y = Q ( x ) \begin{aligned} \frac{dy}{dx}+P(x)y&=Q(x) \end{aligned} dxdy+P(x)y=Q(x)
的方程,称为一阶线性微分方程。
其中, P ( x ) P(x) P(x)、 Q ( x ) Q(x) Q(x)均为 x x x的已知函数, Q ( x ) Q(x) Q(x)称为已知项。
① 当 Q ( x ) = 0 Q(x)=0 Q(x)=0时,方程 y ′ + P ( x ) y = 0 y{'}+P(x)y=0 y′+P(x)y=0,此时方程为一阶齐次线性微分方程,那么
d y d x + P ( x ) y = 0 d y y = − P ( x ) d x \begin{aligned} \frac{dy}{dx}+P(x)y&=0 \\\frac{dy}{y}&=-P(x)dx \end{aligned} dxdy+P(x)yydy=0=−P(x)dx
两边积分,可得
l n y = − ∫ P ( x ) d x + l n C 1 \begin{aligned} lny&=-\int_{}^{}{P(x)dx}+lnC_1 \end{aligned} lny=−∫P(x)dx+lnC1
求得通解为
y = C 1 e − ∫ P ( x ) d x \begin{aligned} y&=C_1e^{-\int_{}^{}{P(x)dx}} \end{aligned} y=C1e−∫P(x)dx
② 当 Q ( x ) ≠ 0 Q(x)≠0 Q(x)=0 时,方程 y ′ + P ( x ) y = Q ( x ) y{'}+P(x)y=Q(x) y′+P(x)y=Q(x),此时方程为一阶非齐次线性微分方程,那么
d y d x + P ( x ) y = Q ( x ) d y y = [ − P ( x ) + Q ( x ) y ] d x \begin{aligned} \frac{dy}{dx}+P(x)y&=Q(x) \\\frac{dy}{y}&=[-P(x)+\frac{Q(x)}{y}]dx \end{aligned} dxdy+P(x)yydy=Q(x)=[−P(x)+yQ(x)]dx
两边积分,可得
l n y = − ∫ P ( x ) d x + ∫ Q ( x ) y d x + l n C 2 \begin{aligned} lny&=-\int_{}^{}{P(x)dx}+\int_{}^{}{\frac{Q(x)}{y}dx}+lnC_2 \end{aligned} lny=−∫P(x)dx+∫yQ(x)dx+lnC2
求得通解为
y = C 2 e ∫ Q ( x ) y d x ∙ e ∫ − P ( x ) d x \begin{aligned} y&=C_2e^{\int_{}^{}{\frac{Q(x)}{y}dx}} \bullet e^{\int_{}^{}{-P(x)dx}} \end{aligned} y=C2e∫yQ(x)dx∙e∫−P(x)dx
设 C 2 e ∫ Q ( x ) y d x = C ( x ) C_2e^{\int_{}^{}{\frac{Q(x)}{y}dx}}=C(x) C2e∫yQ(x)dx=C(x)
则有
y = C ( x ) e ∫ − P ( x ) d x y ′ = C ′ ( x ) e