CodeForces 805D Minimum number of steps

本文解析了一道CodeForces竞赛题目D,该题要求计算将特定字符串转换为另一形式所需的最小步骤数。通过逆向思维从字符串末尾开始处理,实现高效算法。

题目链接:http://codeforces.com/contest/805/problem/D
题意:给你一个字符串,你要对他进行操作,直至不能操作为止,操作的结果是,遇到ab字符串就把他变成bba,问你最少需要多少次操作
解析:其实变几个你大概就能发现规律了,ab->bba,abb->bbab->bbbba,你会发现a后面跟着几个b,那就需要变几次,而且变过以后,b的个数会翻一倍,并且放到了a的前面,所以会对前面有影响,于是你从后往前面看就好了

#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
int main(void)
{
    string a;
    cin>>a;
    int len = a.length();
    int cnt = 0,ans = 0;
    for(int i=len-1;i>=0;i--)
    {
        if(a[i]=='a')
        {
            ans = (ans+cnt)%mod;
            cnt = (cnt*2)%mod;
        }
        else
            cnt++;
    }
    printf("%d\n",ans);
    return 0;
}
### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值