hdu2389 Rain on your Parade【二分图最大匹配-HK算法】

82 篇文章 0 订阅
57 篇文章 0 订阅

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2389
题意:有m个宾客,n把雨伞,预计时间t后将会下大雨,告诉你每个宾客的位置和速度,每把雨伞的位置,问你最多几个宾客不淋雨
解析:很显然的二分图匹配,不过图规模有点大,所以匈牙利这种O(VE)的估计就过不了,而Hopcroft-Carp这种O(sqrt(v)*E)的就不会超时,就当测试下板子

#include <bits/stdc++.h>
#define sqr(x)  ((x)*(x))
using namespace std;
const int maxn = 4005;
const int inf = 0x7fffffff;
typedef long long ll;
struct node
{
    int x,y,s;
}a[maxn],b[maxn];
int g[maxn][maxn];
int mx[maxn],my[maxn];
int dx[maxn],dy[maxn],dis;
int vis[maxn];
int nx,ny;
bool bfs()
{
    queue<int>q;
    dis = inf;
    memset(dx,-1,sizeof(dx));
    memset(dy,-1,sizeof(dy));
    for(int i=0;i<nx;i++)
    {
        if(mx[i]==-1)
        {
            q.push(i);
            dx[i] = 0;
        }
    }
    while(!q.empty())
    {
        int u = q.front();
        q.pop();
        if(dx[u]>dis)
            break;
        for(int v = 0;v<ny;v++)
        {
            if(g[u][v]&&dy[v]==-1)
            {
                dy[v] = dx[u]+1;
                if(my[v]==-1)
                    dis = dy[v];
                else
                {
                    dx[my[v]] = dy[v]+1;
                    q.push(my[v]);
                }
            }
        }
    }
    return dis != inf;
}
bool dfs(int u)
{
    for(int v = 0;v<ny;v++)
    {
        if(!vis[v] && g[u][v] && dy[v] == dx[u]+1)
        {
            vis[v] = 1;
            if(my[v]!=-1 && dy[v]==dis)
                continue;
            if(my[v]==-1 || dfs(my[v]))
            {
                my[v] = u;
                mx[u] = v;
                return true;
            }
        }
    }
    return false;
}
int hk()
{
    int res = 0;
    memset(mx,-1,sizeof(mx));
    memset(my,-1,sizeof(my));
    while(bfs())
    {
        memset(vis,0,sizeof(vis));
        for(int i=0;i<nx;i++)
        {
            if(mx[i]==-1 && dfs(i))
                res++;
        }
    }
    return res;
}
bool judge(int i,int j,int t)
{
    long long dis = sqr((ll)a[i].x-b[j].x)+sqr((ll)a[i].y-b[j].y);
    long long tmp = sqr((ll)a[i].s)*t*t-dis;
    return tmp>=0;
}
int main(void)
{
    int t,time,case_t = 1;
    scanf("%d",&t);
    while(t--)
    {
        int m,n;
        memset(g,0,sizeof(g));
        scanf("%d %d",&time,&m);
        for(int i=0;i<m;i++)
            scanf("%d %d %d",&a[i].x,&a[i].y,&a[i].s);
        scanf("%d",&n);
        for(int i=0;i<n;i++)
            scanf("%d %d",&b[i].x,&b[i].y);
        for(int i=0;i<m;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(judge(i,j,time))
                    g[i][j] = 1;
            }
        }
        nx = m,ny = n;
        printf("Scenario #%d:\n%d\n\n",case_t++,hk());
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值