【程序员AI入门:基础】3.程序员应该知道的LLM基础知识

在这里插入图片描述

一、LLM的技术基石:Transformer架构与核心组件

(一)Transformer架构解析

Transformer是LLM的底层架构,其核心通过自注意力机制实现对序列数据的并行处理,突破了循环神经网络(RNN)的序列依赖瓶颈。

1. 自注意力机制(Self-Attention)

核心作用:动态计算序列中每个词与其他词的语义关联,捕捉长距离依赖。
数学公式
在这里插入图片描述

  • (Q)(查询向量)、(K)(键向量)、(V)(值向量)分别由输入序列映射而来;
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值