【速通RAG实战:进阶】15、对话式智能推荐系统全攻略:精准推荐技术与企业级实践

在这里插入图片描述

一、智能推荐的核心逻辑与技术架构

(一)推荐系统的三维驱动模型

智能推荐系统的核心是构建「用户-对话-内容」的动态关联,通过三大维度实现精准匹配:

  1. 上下文感知:解析对话中的实体、意图和情感,例如用户提问“服务器CPU报警如何处理”中提取实体“CPU”“报警”,意图归类为“故障处理”。
  2. 用户画像:整合静态属性(部门、职级)与动态行为(历史对话、点击偏好),例如新员工自动标记为“入职<7天”,推荐基础培训内容。
  3. 内容建模:将课程、文档、专家等资源转化为可计算的向量表示,例如使用BGE-large-zh模型生成课程介绍的768维Embedding向量。
技术架构图:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值