
一、智能推荐的核心逻辑与技术架构
(一)推荐系统的三维驱动模型
智能推荐系统的核心是构建「用户-对话-内容」的动态关联,通过三大维度实现精准匹配:
- 上下文感知:解析对话中的实体、意图和情感,例如用户提问“服务器CPU报警如何处理”中提取实体“CPU”“报警”,意图归类为“故障处理”。
- 用户画像:整合静态属性(部门、职级)与动态行为(历史对话、点击偏好),例如新员工自动标记为“入职<7天”,推荐基础培训内容。
- 内容建模:将课程、文档、专家等资源转化为可计算的向量表示,例如使用BGE-large-zh模型生成课程介绍的768维Embedding向量。
技术架构图: