把自然数N分解成若干个互不相同的正整数,使乘积最大

转载自:http://m.blog.csdn.net/article/details?id=6212813

#include<iostream>
#include<cstdio>
using namespace std;
//把自然数N分解成若干个互不相同的正整数,使乘积最大;
/**
题意挺晦涩的,就是说要维持这个会议召开需要满足几个条件,而要会议召开最久需要这个条件尽可能久的维持
接着就需要了将整数N分解任意个不同的整数,使这些整数的乘积最大
将N分解为N=a1+a2+a3+..+ak
可以归纳出这么一些规律
1.a1>1  如果a1=1,那么将a1加到ak上,必然使得到的这个乘积大于原来的乘积
2.2>=a[i+1]-a[i]>=1,因为如果出现>2,可以将a[i+1],a[i]改为a[i+1]-1,a[i]+1,使得到的乘积更大
3.最多只有一个i,使得a[i+1]-a[i]=2
  反证法,假设i<j,并且a[i+1]-a[i]=2,a[j+1]-a[j]=2,那么将a[i],a[j+1]替换成a[i]+1,a[j+1]-1
  将使得乘积更大
4.a1<=3 如果a1>=4,那么将a1,a2替换成2,a1-1,a2-1将使得乘积更大
5.如果a1=3,并且存在一个i使得a[i+1]-a[i]=2,那么i一定为t-1
做法就是求出以2起始的最大连续自然数序列之和sum,使得sum的值不超过输入数n,
然后分情况讨论:
设此最大序列为2、3、……、w,则:
1。若剩余值(n-sum)等于w,则最后输出序列为:3、4、……、w、w+2,即将原最大序列每项加1,再将最后剩余的一个1加到最后一项上。
2。若剩余值(n-sum)小于w,则从序列的最大项i开始,从大到小依次将每项加1,直到剩余值用完。
*/
int a[1000];
int n;
int main()
{
    while(scanf("%d",&n)==1)
    {
        int sum=0,l=0,left;
        for(int i=2;i<=n;i++)
        {
            a[l++]=i;
            sum+=i;
            if(sum>n)
            {
                sum-=i,l--,left=n-sum;
                break;
            }
        }
        for(int i=l-1;left;left--)
        {
            a[i]++;
            i--;
            if(i<0) i=l-1;
        }
        for(int i=0;i<l-1;i++) printf("%d ",a[i]);printf("%d/n",a[l-1]);
    }
    return 0;
}


  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这是一个经典问题,叫做整数拆分问题。可以使用动态规划的方法来解决。 首先定义一个状态,设f(n)表示把正整数n拆分成若干个互不相同自然数之和,使得这些自然数乘积最大时,这个最大乘积是多少。 接下来考虑如何求解f(n)。假设我们把n拆分成k和(n-k),其中k是拆分中的最大。因为拆分中不能有相同,所以(n-k)的最大值为(n/2)。因此,我们可以枚举k从1到n/2,然后求出f(n)的值。具体地,f(n)的值可以表示为: f(n) = max{k * f(n-k), k * (n-k)} 其中k的取值范围是1到n/2。 最终,f(n)的值就是所求的答案。 ### 回答2: 设n = a1 + a2 + ... + ak,其中a1, a2, ..., ak是互不相同自然数。要使得这些自然数乘积最大,可以利用学推理进行求解。 首先,我们可以发现,当分解的自然数中存在一个大于等于4时,可以通过将该拆分为2+2的形式,得到的乘积更大。因此,我们可以将n分解为若干个2和1的和。 设n中2的个为m,则n = 2m + (n - 2m) = 2m + x,其中x为1的个。那么,我们需要求解如何选择m和x,才能使得乘积最大。 我们可以使用学归纳法来推导。当m = 1时,n = 2 + x,此时乘积为2*(1 + x) = 2 + 2x。当m = 2时,n = 4 + x,此时乘积为2*2*(1 + x) = 4 + 4x。可以看出,从m = 1到m = 2,乘积的增加量为2。同理,当m增加到m = 3时,乘积的增加量也是2。因此,我们可以得出结论,当m增加1次时,乘积的增加量是2。 现在我们知道了m的选择对乘积的影响,我们可以将n分解为若干个2和1,其中2的个为m,1的个为x = n - 2m。乘积为2^m * 1^x = 2^m。根据前面的推导,我们可以得知,m越大,乘积越大。 所以,为了使得乘积最大,我们选择n除以2的商作为m的取值,n除以2的余作为x的取值即可。 举例来说,对于n = 21,21除以2等于10,余为1,即m = 10,x = 1。将21分解为2 + 2 + ... + 2 + 1的形式,乘积为2^10 = 1024。 因此,将n分解为若干个互不相同自然数的和,使这些自然数乘积最大的方法是将n除以2的商作为m的取值,n除以2的余作为x的取值。乘积为2^m。 ### 回答3: 将n分解为若干个互不相同自然数的和,即找到一组自然数a1, a2, ..., ak使得n = a1 + a2 + ... + ak,并且a1, a2, ..., ak两两不相等。 要使这些自然数乘积最大,可以尽可能地使这些自然数相差最小。这样一来,假设有k个自然数,则这k个自然数的平均值就是它们之和的1/k倍,即(n/k)。由于这k个自然数乘积为(a1)(a2)...(ak),可以通过平均值来表示这个乘积。 如果k是奇,那么(a1)(a2)...(ak) = ((n/k) - k/2)(n/k + k/2)((n/k) - k/4)(n/k + k/4)...,其中k/2, k/4, ...是递减的。可见,乘积最大值出现在n/k为最接近√n的整数上。所以,若n有一个平方根属于这k个自然数中,则平方根最接近√n的自然数与其他自然数乘积最大。 若k是偶,则可以把k分解为m和k-m,其中m和k-m都是自然数。同样地,乘积最大值出现在n/k为n/m的整数倍的自然数上,其中m最接近√n。 通过上述的分析,我们可以得出以下结论: - 若n是一个平方,则平方根最接近√n的自然数与其他自然数乘积最大。 - 若n不是平方,且n的平方根所在的自然数与n的整数倍的乘积最大。 综上所述,对于任意正整数n,要将n分解为若干个互不相同自然数的和,并使这些自然数乘积最大,需要判断n是否是一个平方。若是平方,则平方根最接近√n的自然数与其他自然数乘积最大;若不是平方,则平方根所在的自然数与n的整数倍的乘积最大
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值