大顶堆的构造过程

转载🔗:大顶堆的构造过程

堆是一种特殊的完全二叉树,使用数组存储二叉树时,若某个非叶子节点存储在下标为i的位置,其左右孩子节点分别存储在下标为2i+1和2i+2的位置。

堆可以分为大顶堆和小顶堆,对大顶堆来说,任意非叶子节点不小于其左右孩子节点,对于小顶堆来说,任意非叶子节点不大于其左右孩子节点。若使用数组存储大顶堆,则满足:arr[i] >= arr[2i+1] && arr[i] >=arr[2i+2](i为非叶子节点的在数组中的下标)

 构造大顶堆

基本思想:

1、从最后一个非叶子节点开始,逐一比较非叶子节点和其左右孩子节点

2、根据比较结果交换节点

3、因为交换可能导致孩子节点不再满足大顶堆的性质,所以需要对孩子节点进行调整。

例子:

                        从最后一个非叶子结点开始,分别比较非叶结点和其左右孩子节点的大小。

                                                                无需调整

                                                                        无需调整

                                                                       需要交换元素

                                                                        无需调整

                                                               交换元素位置

交换后可能造成被交换的孩子节点不满足堆的性质,因此每次交换后需要重新对交换的孩子节点进行调整。

                                                        大顶堆建立完成

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值