(1)粒子群优化算法分布式电源选址定容 如图12 matlab源代码,代码按照高水平文章复现,保证正确
分析了分布式电源接入配电网前后对网络损耗的影响,在此基础上提出采用混合模拟退火算法的改进粒子群优化算法进行分布式电源选址和定容的计算,其目的是使配电系统网络损耗进一步减少。
最后通过两个算例将本文提出的算法与采用遗传算法、模拟退火算法的计算结果进行对比分析,验证了所提出的改进算法在分布式电源选址和定容问题求解中具有很强的全局搜索能力和快速的收敛速度,为进一步开展分布式电源规划拓展思路。
分布式电源 配电网 网络损耗 改进粒子群算法
(2)电力系统大数据分析的卷积神经网络 如图34
python源代码,代码按照高水平文章复现,保证正确
提出了使用卷积神经网络(CNN的)等机器学习算法来开发ISO人工智能决策系统,该系统可以帮助甚至取代人类操作员,有效地控制未来复杂的电网。
介绍了CNN的操作以及以二阶栈形式向CNN提供功率数据的概念。
对CNN进行多类多参数训练分类。
讨论了Tensorflow在神经网络训练和分析中的应用。
训练数据集的准确率高达90%,准确率达79%。
使用Softmax分类器观察验证数据集的准确性。
结果强调了在电力系统中使用CNIN进行大数据分析的可行性。
通过使用更大的数据集,使用激活函数如Sigmoid或指数线性单元(ELU)进行实验,并微调CNN超参数,仍然有很大的改进空间。
ID:73244638356415313
SourseCode
标题:分布式电源选址定容中的粒子群优化算法与改进
摘要:本文基于对分布式电源接入配电网前后网络损耗影响的分析,提出了一种改进的粒子群优化算法,用于分布式电源选址和定容计算。该算法采用混合模拟退火算法,旨在进一步减少配电系统的网络损耗。通过两个算例与遗传算法和模拟退火算法的结果进行对比分析,验证了改进算法在分布式电源选址和定容问题求解中具有全局搜索能力和快速收敛速度的特点。本文的研究结果为进一步开展分布式电源规划提供了拓展思路。
-
引言
随着分布式电源的接入不断增多,配电网的网络损耗问题变得愈发突出。为了减少网络损耗并提高配电系统的效率和可靠性,分布式电源的选址和定容成为研究的重点。本文旨在提出一种改进的粒子群优化算法,用于解决分布式电源选址和定容问题。 -
分布式电源接入配电网前后对网络损耗的影响
本节主要分析了分布式电源接入配电网前后对网络损耗的影响。通过对配电网拓扑结构和电力负荷的分析,可以发现分布式电源接入后,网络损耗明显增加。这进一步凸显了分布式电源选址和定容的重要性。 -
粒子群优化算法及其在分布式电源选址定容中的应用
3.1 算法原理
本节介绍了粒子群优化算法的原理和基本流程。粒子群优化算法是一种模拟鸟群觅食行为的智能优化算法,通过不断迭代搜索最优解。在分布式电源选址和定容问题中,可以将每个粒子视为一个候选解,并通过适应度函数评估候选解的优劣程度。
3.2 算法改进
本节提出了一种改进的粒子群优化算法,采用混合模拟退火算法来增加算法的全局搜索能力和收敛速度。具体而言,算法在每次迭代时,根据一定概率随机选择模拟退火算法进行搜索,并根据当前温度和适应度函数进行优化。通过将模拟退火算法与粒子群优化算法相结合,可以得到更优的分布式电源选址和定容方案。
-
算法实验与结果分析
通过两个算例,本节对本文提出的改进算法与遗传算法和模拟退火算法的结果进行对比分析。实验结果表明,改进算法具有较强的全局搜索能力和快速的收敛速度。与其他算法相比,改进算法在减少网络损耗和提高配电系统效率方面具有明显优势。 -
电力系统大数据分析的卷积神经网络
本节介绍了使用卷积神经网络(CNN)等机器学习算法开发ISO人工智能决策系统的方法。该系统可以帮助甚至取代人类操作员,有效地控制未来复杂的电网。具体而言,本节讨论了CNN的操作,以及如何将功率数据通过二阶栈形式提供给CNN。同时,针对多类多参数训练分类问题,对CNN进行了训练和优化,并讨论了Tensorflow在神经网络训练和分析中的应用。 -
结论与展望
本文通过分析分布式电源选址定容中的粒子群优化算法及其改进,以及电力系统大数据分析中的卷积神经网络,为分布式电源规划提供了拓展思路。实验结果验证了改进算法在减少网络损耗和提高配电系统效率方面的优势,但仍有改进空间,如使用更大的数据集、调整激活函数和微调超参数等。未来的研究可以进一步完善算法,并探索其他机器学习算法在电力系统中的应用。
关键词:分布式电源、配电网、网络损耗、粒子群算法、改进算法、卷积神经网络、电力系统大数据分析
相关的代码,程序地址如下:http://imgcs.cn/638356415313.html