信号与系统实验:信号处理

65 篇文章 19 订阅 ¥59.90 ¥99.00
本文介绍了信号与系统中的信号处理技术,包括时域的平滑滤波和时域滤波器设计,以及频域的傅里叶变换和频率滤波。提供了Python示例代码,帮助理解并应用这些技术进行信号去噪、平滑和滤波。
摘要由CSDN通过智能技术生成

在信号与系统领域,信号处理是一项重要的技术,用于分析、处理和改善信号的特性。通过信号处理,我们可以提取有用的信息、去除噪声、压缩数据以及实现其他信号增强或改变的操作。本文将介绍一些常见的信号处理技术,并提供相应的源代码示例。

一、时域信号处理

  1. 平滑滤波
    平滑滤波是一种常见的时域信号处理技术,用于去除信号中的高频噪声。其中,移动平均滤波是一种简单有效的方法。下面是一个Python示例代码,演示了如何对信号进行移动平均滤波:
import numpy as np

def moving_average(signal, window_size):
    window = np.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值