基频提取算法综述

65 篇文章 19 订阅 ¥59.90 ¥99.00
本文概述了基频提取在语音信号处理中的重要性,包括自相关法、快速傅里叶变换法和自适应差分法等常用算法,并提供了源代码示例。
摘要由CSDN通过智能技术生成

在语音信号处理中,基频提取是一项重要的任务,用于分析和测量语音信号中的基本频率成分。基频通常对应于声音的音调或音高,因此基频提取对于音乐、语音合成、语音识别等应用具有重要意义。本文将综述几种常用的基频提取算法,并提供相应的源代码实现。

  1. 自相关法
    自相关法是最简单和最常用的基频提取算法之一。其基本思想是通过计算语音信号与其自身的延迟版本之间的相关性来确定基频。具体步骤如下:
import numpy as np

def pitch_extraction(signal, sample_rate):
    autocorr = np.correlate(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值