信号处理和滤波器:理解与窗函数原理

65 篇文章 19 订阅 ¥59.90 ¥99.00
本文深入探讨了信号处理的基础,包括采样和量化、傅里叶变换,重点阐述了滤波器在改变信号频率特性中的作用,并详细介绍了窗函数及其在减少边界效应中的应用。通过实例,读者将更好地理解这些概念并应用于实际信号处理任务。
摘要由CSDN通过智能技术生成

信号处理是将信号进行分析、变换和处理的过程。在数字信号处理中,滤波器是一种常用的工具,用于改变信号的频率特性或时域特性。而窗函数是一种用于减小信号边界效应的技术。本文将详细介绍信号处理和滤波器的基本理念,并解释窗函数的原理。此外,我们还将提供相关的源代码示例。

信号处理基础

信号处理是一门研究如何对信号进行采集、分析、变换和提取有用信息的学科。信号可以是来自各种现象的波形,例如音频信号、图像信号、生物信号等。在信号处理中,我们常常需要处理的问题包括滤波、降噪、特征提取、频谱分析等。

采样和量化

在数字信号处理中,首先需要对连续时间的信号进行采样和量化。采样是指以一定的时间间隔对连续时间信号进行离散化处理,得到离散时间信号。量化是指将离散时间信号的幅值量化为离散的数值。

import numpy as np

# 采样
def sample(signal,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值