身高和弹跳摸高达到多少才能扣篮

本文详细解析了不同摸高条件下实现扣篮的可能性及技巧,从315cm到370cm以上,探讨了如何通过技巧和训练在各种高度下完成扣篮。同时,文章还讨论了身高、弹跳力与扣篮的关系,为篮球爱好者提供了实用的参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

篮框标准高度是305cm,个人最大摸高需要达到多少才能扣篮呢?

最大摸高达到:


315cm
理论上,摸高能达到315就能扣篮,高出篮框10cm
但这个是起跳最高点高度,需要单手用手指托起球底,有技巧扣进去。
也许根本说不上扣篮,只是拉直身体把球拨进去,更说不上抓框感觉。

320cm
尽管手指根超过篮框,似乎也很难,可以拿个小孩玩的塑胶球,单手能抓稳的那种,来满足一下。(^ _ ^)

325cm
有点勉强,练习期间,进入状态后,单手五六次或许能把球拨进去一次。
手掌大会好一点。

在一些不标准的,高度略低的篮框还行。
国内有不少休闲球场,乃至校园球场 的篮框高度 略低于标准高度。

可尝试 抛扣,补扣。
比如让队友 从底线 投一个砸板弧度的三分球,看准时机跃起,补扣。
这种方式,队友容易投准,实战中也可以尝试,但空中迎着来球方向接球费劲,需要技巧和腕力。

或者用足球,或减少投篮距离,拉高抛物线 来降低空中接球时的 后挫力。
    
让队友或自己砸球在地,等球弹到最高点时起跳,在球下落到篮框附近时,粘球扣入。
这种方式 空中接球会轻松一点,甚至不用把球接稳就能拨进去。

330cm
进入状态后,体力充足时 可以扣进。因为起跳腾空时,保持高举持球的姿势,会有少量高度损耗。

实战中,发挥扣篮有点困难,容易砸框。

当然罗,在防守球员失位的情况下,凭着高速奔跑的高动能速度,强行高举砸下去也行!!!

 

335cm
能到这个高度不再是“拨”,可以 狠砸 一下!

篮底下 双手扣 成功率 较高。


340cm
比较稳妥,练习时,起跳位置 可以移开小半步,不需要紧挨着篮底。

实战中,体力充足,无人看防,可以秀一下。

从姿势上也有扣篮的观感。

 

345cm
进入状态后,就能相对轻松地 三步上篮式扣入,不再需要每次都 鼓足干劲,崩紧肌肉 起跳。

350cm
可以有一定幅度拉伸手臀扣篮。整体动作上可以有点 滞空感 和 空中滑翔感。

能来个 大猩猩挂网式的, 双手 (持球贴头) 暴扣!

 

360cm
能做一些有点难度扣篮动作。

 

370cm
能做高难度的扣篮动作。

 

3.80+ 
奇才。。。。。。

 

 

身高与弹跳和扣篮
身高刚好180cm 的人,祼足站立摸高大概是230cm(穿球鞋加2-3cm),助跑 弹跳 90cm 以上,才有 扣篮 的可能。

简单的说:你的 摸高 需要高出篮框一个手掌位,才有扣篮的可能

普通人(黄种人)垂直弹跳 40-60 cm,超过60cm的算是不错了。达到70cm具备参赛潜力。

普通(不完全运动状态)助跑 比 垂直弹跳提高 10-20 CM。

一个人完全进入运行状态时的起跑弹跳,比普通状态下助跑弹跳高 5-10cm。

在校学生中,原地 垂直弹跳 60cm 以上,几乎 十里挑一(甚至 1/20)

身高190cm以下的学生、业余人士练习“砸框”还行的。扣进去有难度。实战扣篮更难得。

(如果是在 一些 非标准框 的 休闲场、校园场 ,马马虎虎 可以吧  ^_^ )

 

 

identity 身份认证 购VIP最低享 7 折! triangle vip 30元优惠券将在 04:24:36 后过期 去使用 triangle 数据可视化是将复杂的数据集通过图表、图像等视觉元素进行呈现,以便于人们更容易地理解解读数据。在“数据可视化期末课设~学生成绩可视化分析.zip”这个压缩包中,我们可以看到一系列与数据可视化相关的资源,包括Jupyter代码、HTML图片、答辩PPT以及Word文档,这些内容涵盖了数据可视化的基础到高级应用,适合于完成一个全面的期末课程设计项目。 Jupyter代码是使用Python编程语言进行数据处理可视化的主要工具。在这个项目中,学生可能使用了pandas库来加载清洗数据,可能涉及到的数据处理步骤包括去除重复值、处理缺失值以及数据类型转换等。接着,他们可能使用matplotlib或seaborn库来创建各种图表,如直方图、散点图、箱线图等,以展示学生成绩的分布、对比趋势。此外,更高级的可视化库如plotly或bokeh可能也被用来实现交互式图表,增加用户对数据的理解深度。 保存的HTML图片是Jupyter Notebook的输出结果,它展示了代码运行后的可视化效果。这些图片可以直观地揭示学生成绩的统计特征,例如平均分、标准差、最高分最低分等。通过颜色编码或者图例,我们可以识别出不同科目或者不同班级的表现,帮助分析教学质量学生学习情况。 答辩PPT则可能包含项目的概述、目的、方法、结果结论。在PPT中,学生可能会详细阐述他们选择特定可视化方法的理由,如何解读图表,以及从数据中得出的洞察。此外,PPT的制作也是展示其表达沟通能力的重要部分,要求清晰、有逻辑地组织信息。 Word文档可能是项目报告,详细记录了整个过程,包括数据来源、预处理步骤、使用的可视化技术、分析结果以及可能遇到的问题解决方案。报告中的数据分析部分会详细解释图表背后的含义,例如通过对比不同学科的分数分布,找出哪些科目可能存在困难,或者分析成绩与特定因素(如性别、年级等)的关系。 这个压缩包提供了完整的数据可视化项目实例,涉及了数据获取、处理、可视化解释的一系列步骤,对于学习掌握数据可视化技能非常有价值。通过这样的练习,学生不仅能够提高编程技巧,还能培养数据驱动思维问题解决能力,为未来从事数据分析或相关领域的工作打下坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值