ACM数论模板(转)

转自:http://www.cnblogs.com/Lee-geeker/p/3372084.html

1.最大公约数和最小公倍数。

//模版
int gcd(int a, int b)
{
    if(a<b){int t=a;a=b;b=t;}
    return a%b==0?b:gcd(b,a%b);
}
int lcm(int a, int b)
{
    return a/gcd(a,b)*b;
}

参考题目:HDU1018 http://acm.hdu.edu.cn/showproblem.php?pid=1108

#include<iostream>

using namespace std;

int gcd(int a, int b){    if(a<b){int t=a;a=b;b=t;}    return a%b==0?b:gcd(b,a%b);}
int lcm(int a, int b){    return a/gcd(a,b)*b;}

int main()
{
    int a,b;
    while(scanf("%d%d",&a,&b)!=EOF)
    {
        printf("%d\n",lcm(a,b));
    }
    return 0;
}

2.快速幂取模(Montgomery算法)

__int64 qpow(int a,int b,int r)//快速幂 
{
    __int64 ans=1,buff=a;
    while(b)
    {
        if(b&1)ans=(ans*buff)%r;
        buff=(buff*buff)%r;
        b>>=1;
    }
    return ans;
}

参考题目:HDU1395  http://acm.hdu.edu.cn/showproblem.php?pid=1395

#include<iostream>

using namespace std;

unsigned Montgomery(unsigned n,unsigned p,unsigned m)
{ //快速计算(n^e)%m的值
      unsigned k=1;
      n%=m;
     while(p!=1)
     {
         if(0!=(p&1))k=(k*n)%m;
         n=(n*n)%m;
         p>>=1;
    }
    return(n*k)%m;
}
int main()
{
    int n;
    int flag,i;
    while(scanf("%d",&n)!=EOF)
    {
        if(!(n&1)||n<=1)
            printf("2^? mod %d = 1\n",n);
        else
            for(i=1;;i++)
            {
                if(Montgomery(2,i,n) == 1)
                {
                    printf("2^%d mod %d = 1\n",i,n);
                    break;
                }
            }
    }
    return 0;
}

参考题目:HDU2035 http://acm.hdu.edu.cn/showproblem.php?pid=2035

#include<iostream>

using namespace std;

__int64 qpow(int a, int p, int r)
{
    int ans = 1;
    int buff = a;
    while(p)
    {
        if(p&1)    ans = (ans*buff)%r;
        buff = buff*buff%r;
        p>>=1;
    }
    return ans;
}

int main()
{
    int a,b;
    while(scanf("%d%d",&a,&b)!=EOF&&(a!=0&&b!=0))
    {
        printf("%d\n",qpow(a,b,1000));
    }
    return 0;
}
#include <iostream>
using namespace std;
int main()
{
    int a,b,ans;
    while(cin>>a>>b)
    {
        if(!a && !b)
            break;
        ans=0;
        a=a%1000;
        int tmp=a;
        while(b-->1)
        {
            a=(a*tmp)%1000;
        }
        cout<<a<<endl;
    }
    return 0;
}

3.费马小定理

费马小定理是数论中的一个重要定理,其内容为: 假如p是质数,且gcd(a,p)=1,那么 a^(p-1) ≡1(mod p)。即:假如p是质数,且a,p互质,那么a的(p-1)次方除以p的余数恒等于1。

4196 4704

 

4.找规律,循环问题,递推

1005 1021 2050 1719

 

5.同余式,中国剩余定理

3430 1573

 

6.米勒拉宾素数测试

__int64 qpow(int a, int b, int r)
{
    __int64 ans=1, buffer=a;
    while(b)
    {
        if(b&1) ans = ans*buffer%r;
        buffer = buffer*buffer%r;
        b>>=1;
    }
    return ans;
}
bool Miller_Rabbin(int n, int a)
{
    int r=0,s=n-1,j;
    if(!(n%a))
        return false;
    while(!(s&1))
    {
        s>>=1;
        r++;
    }
    __int64 k=qpow(a,s,n);
    if(k==1)
        return true;
    for(j=0;j<r;j++,k=k*k%n)
    {
        if(k==n-1)
                return true;        
    }
    return false;
}

bool IsPrime(int n)
{
    int tab[]={2,3,5,7,11};
    for(int i=0;i<5;i++)
    {
        if(n==tab[i])
            return true;
        if(!Miller_Rabbin(n,tab[i]))
            return false;    
    }
    return true;
}

参考题目:HDOJ2138 http://acm.hdu.edu.cn/showproblem.php?pid=2138

#include<iostream>


using namespace std;


__int64 qpow(int a, int b, int r)
{
    __int64 ans=1, buffer=a;
    while(b)
    {
        if(b&1) ans = ans*buffer%r;
        buffer = buffer*buffer%r;
        b>>=1;
    }
    return ans;
}
bool Miller_Rabbin(int n, int a)
{
    int r=0,s=n-1,j;
    if(!(n%a))
        return false;
    while(!(s&1))
    {
        s>>=1;
        r++;
    }
    __int64 k=qpow(a,s,n);
    if(k==1)
        return true;
    for(j=0;j<r;j++,k=k*k%n)
    {
        if(k==n-1)
                return true;        
    }
    return false;
}

bool IsPrime(int n)
{
    int tab[]={2,3,5,7,11,13};
    for(int i=0;i<6;i++)
    {
        if(n==tab[i])
            return true;
        if(!Miller_Rabbin(n,tab[i]))
            return false;    
    }
    return true;
}

int main()
{
    int i,N;
    long tmp, count;
    while(scanf("%d",&N)!=EOF)
    {
        count = 0;
        for(i=0;i<N;i++)
        {
            scanf("%ld",&tmp);
            if(IsPrime(tmp))
                count++;
        }
        printf("%d\n",count);
    }
}

7.筛选法

1999 1286 2098

 

8.素数的筛选法,穷举,因数,判定等

#include<iostream>

using namespace std;

bool prime[10000+5];

void Init()
{
    for(int i = 2; i <= 10000; ++i)
    {
        prime[i] = true;
    }
    for(int i =2;i <= 10000; ++i)
    {
        if(prime[i] == true)
        {
            for(int j = 2; i*j <= 10000; ++j)
                prime[i*j] = false;
        }
    }
}
//保存素数
#include<iostream>
#include<string.h>
using namespace std;

#define N 100001
bool IsPrime[N];
int Prime[N],cnt;

void Init_Prime_Table()
{
    long long int i,j;//注意,i比较大时会容易超int的范围。
     
    cnt = 0;
    memset(IsPrime,true,sizeof(IsPrime));
    IsPrime[1] = false;
    for(i=2;i<=N;i++)
    {
        if(IsPrime[i])
        {
            Prime[cnt++] = i;
            for(j=i*i;j<=N;j+=i)
                IsPrime[j] = false;
        }
    }
}


int main()
{
    Init_Prime_Table();
    for(int i=0;i<1000;i++)
    {
        printf("%5d",Prime[i]);
    } 
    
    return 0;
}

2098 2161

 

9.普通素数判定

bool IsPrime(int n)
{
    int i = 0;
    if(n<=2) return false;
    for(i=2;i*i<=n;i++)
    {
        if(n%i==0)
            return false;
    }
    return true;
}

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
几何\ 多边形 多边形切割 浮点函数 几何公式 面积 球面 三角形 三维几何 凸包(graham) 网格(pick) 圆 整数函数 注意 结构\ 并查集 并查集扩展(friend_enemy) 堆(binary) 堆(mapped) 矩形切割 线段树 线段树扩展 线段树应用 子段和 子阵和 其他\ 大数(整数类封装) 分数 矩阵 线性方程组(gauss) 日期 线性相关 数论\ 阶乘最后非零位 模线性方程(组) 质数表 质数随机判定(miller_rabin) 质因数分解 最大公约数欧拉函数 数计算\ 定积分计算(Romberg) 多项式求根(牛顿法) 周期性方程(追赶法) 图论_NP搜索\ 最大团(n小于64) 最大团 图论_连通性\ 无向图关键边(dfs邻接阵形式) 无向图关键点(dfs邻接阵形式) 无向图块(bfs邻接阵形式) 无向图连通分支(bfs邻接阵形式) 无向图连通分支(dfs邻接阵形式) 有向图强连通分支(bfs邻接阵形式) 有向图强连通分支(dfs邻接阵形式) 有向图最小点基(邻接阵形式) 图论_匹配\ 二分图最大匹配(hungary邻接表形式) 二分图最大匹配(hungary邻接阵形式) 二分图最大匹配(hungary邻接表形式,邻接阵接口) 二分图最大匹配(hungary正向表形式) 二分图最佳匹配(kuhn_munkras邻接阵形式) 一般图最大匹配(邻接表形式) 一般图最大匹配(邻接阵形式) 一般图最大匹配(正向表形式) 一般图匹配(邻接表形式,邻接阵接口) 图论_网络流\ 上下界最大流(邻接阵形式) 上下界最小流(邻接阵形式) 上下界最大流(邻接表形式) 上下界最小流(邻接表形式) 最大流(邻接阵形式) 最大流(邻接表形式) 最大流(邻接表形式,邻接阵接口) 最大流无流量(邻接阵形式) 最小费用最大流(邻接阵形式) 图论_应用\ 欧拉回路(邻接阵形式) 前序表化 树的优化算法 拓扑排序(邻接阵形式) 最佳边割集 最佳顶点割集 最小边割集 最小顶点割集 最小路径覆盖 图论_最短路径\ 最短路径(单源bellman_ford邻接阵形式) 最短路径(单源dijkstra邻接阵形式) 最短路径(单源dijkstra_bfs邻接表形式) 最短路径(单源dijkstra_bfs正向表形式) 最短路径(单源dijkstra+binary_heap邻接表形式) 最短路径(单源dijkstra+binary_heap正向表形式) 最短路径(单源dijkstra+mapped_heap邻接表形式) 最短路径(单源dijkstra+mapped_heap正向表形式) 最短路径(多源floyd_warshall邻接阵形式) 图论_支撑树\ 最小生成树(kruskal邻接表形式) 最小生成树(kruskal正向表形式) 最小生成树(prim邻接阵形式) 最小生成树(prim+binary_heap邻接表形式) 最小生成树(prim+binary_heap正向表形式) 最小生成树(prim+mapped_heap邻接表形式) 最小生成树(prim+mapped_heap正向表形式) 最小树形图(邻接阵形式) 应用\ joseph模拟 N皇后构造解 布尔母函数 第k元素 幻方构造 模式匹配(kmp) 逆序对数 字符串最小表示 最长公共单调子序列 最长子序列 最大子串匹配 最大子段和 最大子阵和 组合\ 排列组合生成 生成gray码 置换(polya) 字典序全排列 字典序组合 组合公式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值