图的关节点(Tarjan算法)

数据结构复习–求图的关节点(Tarjan算法)

重连通图的关节点(割点)

关节点

若连通图中某个顶点和其相关联的边被删去后,该连通图被分割成两个或两个以上的联通分量,则称此节点为关节点(割点)。

重(双)连通图

没有关节点的连通图称为双连通图。
即从一个双连通图中删去任何一个顶点及其想关联的边,它仍为一个连通图。

深度优先生成树与回边

从图中任意顶点开始,执行深度优先搜索并在顶点被访问时给它们编号。
而对于图中实际存在而深度优先生成树中不存在的边,称为回边(v,w)或背向边(v,w)。
如下例,虚线部分表示回边。

在这里插入图片描述
在这里插入图片描述

Visited数组与Low数组

visited数组

第一次对图执行深度优先搜索时,依次访问节点,同时按访问顺序对节点编号。对于每一个节点v,我们称其先序序号为visited[v]。

low数组

然后对深度优先搜索树上的每一个节点v,计算编号最低的顶点,称之为low[v]。
其意义为(个人理解):通过该点,经过零条或多条边及最多一条回边,可以到达的顶点的编号的最小值。例如上图中的C点,其先序编号为3,但可首先通过一条边达到D点,并通过D的回边到达A,所以其low数组编号,及可到达的最低节点编号为1。

上图中顶点的数字标注为visited[v]/low[v]。

Low数组求法

在这里插入图片描述

解释:对于任意一个顶点V,其low数组值为自身先序编号(visited[v]),其所有孩子节点的low值的最小值,与其通过回边相连的祖先节点K的先序编号(visited[k])这三者中的最小值。

关节点的判定

1.若生成树中根节点顶点V,其子树个数大于1,则该节点一定为关节点(易理解)。
2.对于非根节点v,它是割点当且仅当它有某个儿子w,使得Low[w]>=Visited[v]。注:该条件在根处总是满足,所以需要进行特别判断。
上例中顶点C与D为关节点。

Low[w]>=Visited[v]的理解:

Low[w]>=Visited[v]含义为,v有某个孩子w,其可到达的节点的最低先序编号大于等于其父亲的先序编号。即w一定不可能到达比v先序编号低的节点(深度优先搜索中比v先访问的节点),则删除节点v后,w一定不能与v之前的节点相连,则该图不为连通图。

Tarjan算法

Tarjan算法为求关节点的常用算法,其时间复杂度为O(V+E)。

void FindArticul(ALGraph G){
 //连通图G以邻接表作存储结构,查找并输出G上全部关节点。全局量count对访问计数。
 count = 1; visited[0] = 1;   //设定邻接表上0号顶点为生成树的根 
 for( i=1; i<G.vexnum; ++i)   //其余顶点清零,尚未访问。 
 visited[i]=0;
 p=G.vertices[0].firstarc;   //p为0号顶点指向的第一条依附于它的弧。 
 v=p->adjvex;                //v为该弧所指向的顶点的位置。(即树的根结点) 
 
 DFSArticul(G,v);             //从第v顶点出发深度优先查找关节点 
 if(count<G.vexnum)           //生成树的根至少有两颗子树 
 {
  printf(0,G.vertices[0].data);   //根是关节点,输出 
  while(p->nextarc)         //指向下一条弧 
  {
   p=p->nextarc;
   v=p->adjvex;         
   if(visited[v]==0)
   DFSArticul(g,v);
   } 
 }
}

void DFSArticul(ALGraph G,int v0){   //在深度遍历,标记visited[v]的同时检查关节点 
 //从第v0个顶点出发深度优先遍历图G,查找并输出G上全部关节点。全局count对访问计数。 
 visited[v0]=min=++count;
 for(p=G.vertices[0].firstarc;p;p=p->nextarc){    //对v0的每个邻接顶点检查 
  w=p->adjvex;           //w为v0邻接顶点
  if(visited[w]==0)      //w未曾访问,是v0的孩子; 注:结点v的low与其孩子有关,所以一定先递归求出节点的所有子树的low值。 
  {
   DFSArticul(G,w);    //返回前求得low[w];
   if(low[w]<min)  min=low[w];
   if(low[w]>=visited[v0])
   printf(v0,G.vertices[v0].data);    //输出关节点;         
   } 
  else if(visited[w]<min)     //不是孩子节点,则为v0节点的祖先(回边) 
  min=visited[w];
 }
 low[v0]=min;
}

注意点:

1.搜索树的根节点需要特判
2.对于每个顶点V,其low一定要在其所有孩子的low值已知的情况下才能决定,所以在算法中要先递归调用求出所有子树的low值。
3.节点孩子的判断方式(w为v的邻接点,且w之前未被访问),
回边的判断方式(w为v的邻接点,w已被访问)。
4.DFSArticul函数同时实现visited数组的标记,low数组的更新与关节点的判定。

时间复杂度分析:

Tarjan算法的时间复杂度与图的深度优先遍历复杂度相同,都是对所有顶点与边访问一次,复杂度为O(V+E)。

  • 15
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
Tarjan算法和Kosaraju算法都是求解有向强连通分量的算法,它们的时间复杂度都为O(N+M),其中N为中节点数,M为中边数。 Tarjan算法的基本思想是通过DFS遍历中的节点,并在遍历的过程中维护一个栈,用于存储已经遍历过的节点。在遍历的过程中,对于每个节点,记录它被遍历到的时间戳和能够到达的最小时间戳,当一个节点的最小时间戳等于它自身的时间戳时,说明这个节点及其之前遍历到的节点构成了一个强连通分量,将这些节点从栈中弹出即可。 Kosaraju算法的基本思想是先对原进行一次DFS,得到一个反向,然后再对反向进行DFS。在第二次DFS的过程中,每次从未被访问过的节点开始遍历,遍历到的所有节点构成一个强连通分量。 两种算法的具体实现可以参考以下代码: ```python # Tarjan算法 def tarjan(u): dfn[u] = low[u] = timestamp timestamp += 1 stk.append(u) for v in graph[u]: if not dfn[v]: tarjan(v) low[u] = min(low[u], low[v]) elif v in stk: low[u] = min(low[u], dfn[v]) if dfn[u] == low[u]: scc = [] while True: v = stk.pop() scc.append(v) if v == u: break scc_list.append(scc) # Kosaraju算法 def dfs1(u): vis[u] = True for v in graph[u]: if not vis[v]: dfs1(v) stk.append(u) def dfs2(u): vis[u] = True scc.append(u) for v in reverse_graph[u]: if not vis[v]: dfs2(v) # 构建和反向 graph = [[] for _ in range(n)] reverse_graph = [[] for _ in range(n)] for u, v in edges: graph[u].append(v) reverse_graph[v].append(u) # Tarjan算法求解强连通分量 dfn = [0] * n low = [0] * n timestamp = 1 stk = [] scc_list = [] for i in range(n): if not dfn[i]: tarjan(i) # Kosaraju算法求解强连通分量 vis = [False] * n stk = [] scc_list = [] for i in range(n): if not vis[i]: dfs1(i) vis = [False] * n while stk: u = stk.pop() if not vis[u]: scc = [] dfs2(u) scc_list.append(scc) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值