dfs+回溯写题两种思路

这篇博客介绍了如何使用DFS(深度优先搜索)配合回溯法来解决字符串排列和全排列的问题。通过示例代码详细展示了两种不同实现方式:一种是不改变原数组,使用辅助变量进行遍历;另一种是在遍历过程中直接修改原数组,并进行了剪枝优化。两种方法都以递归的形式展示了如何寻找所有可能的排列组合。
摘要由CSDN通过智能技术生成

dfs+回溯写题两种思路

主要框架

	public void dfs(选择列表){
		//1.找到结束条件
		//2.遍历所有可能性
			//2.1做选择
			//2.2 递归调用自己进一步深度遍历
		//3.回撤选择
}
		
  • dfs函数的参数变量我觉得是越少越好,所以将一些不怎么改变的变量设置为全局变量更容易理清思路

1.遍历的过程不停的往中间变量添加数据

剑指 Offer 38. 字符串的排列

	static Set<String> res;
    static char[] ch;
    static boolean[] ch_helper;
    public static String[] permutation(String s) {
        res = new HashSet<>();
        ch = s.toCharArray();
        ch_helper = new boolean[ch.length];
        dfs("");
        return res.toArray(new String[res.size()]);
    }

    private static void dfs(String str) {
        //1.结束条件
        if(str.length() == ch.length){
            res.add(str);
        }
        //2.遍历所有可能性
        for(int i = 0; i < ch.length; i++){
            if(ch_helper[i] != true){
                ch_helper[i] = true;
                dfs(str + ch[i]);
                ch_helper[i] = false;
            }
        }
    }

46. 全排列

	static List<List<Integer>> res;
    static LinkedList<Integer> tmp;
    public static List<List<Integer>> permute(int[] nums) {
        res = new LinkedList<>();
        tmp = new LinkedList<>();
        dfs(nums);
        return res;
    }

    private static void dfs(int[] nums) {
        if(tmp.size() == nums.length){
            res.add(new ArrayList<>(tmp));
            return;
        }
        for(int num : nums){
            if(tmp.contains(num)){
                continue;
            }
            tmp.add(num);
            dfs(nums);
            tmp.removeLast();
        }

2. 遍历的过程改变原列表,这种一般会从下标0开始

剑指 Offer 38. 字符串的排列


	static List<String> res;
    static char[] ch;
    public static String[] permutation(String s) {
        res = new LinkedList<>();
        ch = s.toCharArray();
        dfs(0);
        return res.toArray(new String[res.size()]);
    }

    private static void dfs(int i) {
        //1.结束条件
        if (i == ch.length - 1){
            res.add(String.valueOf(ch));
            return;
        }
        //2.选择列表
        Set<Character> set = new HashSet<>();
        for(int idx = i; idx < ch.length; idx++){
            if(set.contains(ch[idx]))
                continue;
            set.add(ch[idx]);
            //2.1选择
            swap(ch, idx, i);
            //2.2 进一步
            dfs(i + 1);
            //3.回溯
            swap(ch, idx, i);
        }
    }

    private static void swap(char[] ch, int idx, int i) {
        char tmp = ch[idx];
        ch[idx] = ch[i];
        ch[i] = tmp;
    }

46. 全排列

  1. 么有剪枝
static List<String> res;
    static char[] ch;
    public static String[] permutation(String s) {
        res = new LinkedList<>();
        ch = s.toCharArray();
        dfs(0);
        return res.toArray(new String[res.size()]);
    }

    private static void dfs(int i) {
        //1.结束条件
        if (i == ch.length - 1){
            res.add(String.valueOf(ch));
            return;
        }
        //2.选择列表
        for(int idx = i; idx < ch.length; idx++){
            set.add(ch[idx]);
            //2.1选择
            swap(ch, idx, i);
            //2.2 进一步
            dfs(i + 1);
            //3.回溯
            swap(ch, idx, i);
        }
    }

    private static void swap(char[] ch, int idx, int i) {
        char tmp = ch[idx];
        ch[idx] = ch[i];
        ch[i] = tmp;
    }
  1. 带剪枝
	static List<String> res;
    static char[] ch;
    public static String[] permutation(String s) {
        res = new LinkedList<>();
        ch = s.toCharArray();
        dfs(0);
        return res.toArray(new String[res.size()]);
    }

    private static void dfs(int i) {
        //1.结束条件
        if (i == ch.length - 1){
            res.add(String.valueOf(ch));
            return;
        }
        //2.选择列表
        Set<Character> set = new HashSet<>();
        for(int idx = i; idx < ch.length; idx++){
            if(set.contains(ch[idx]))
                continue;
            set.add(ch[idx]);
            //2.1选择
            swap(ch, idx, i);
            //2.2 进一步
            dfs(i + 1);
            //3.回溯
            swap(ch, idx, i);
        }
    }

    private static void swap(char[] ch, int idx, int i) {
        char tmp = ch[idx];
        ch[idx] = ch[i];
        ch[i] = tmp;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值