备考蓝桥杯(1)算式☆☆☆ + ☆☆☆ = ☆☆☆ java 实现(全排列)

package pers.robert.lanqiaobeizhenti129;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * 填算式 
看这个算式:
☆☆☆ + ☆☆☆ = ☆☆☆
如果每个五角星代表 1 ~ 9 的不同的数字。
这个算式有多少种可能的正确填写方法?
173 + 286 = 459
295 + 173 = 468
173 + 295 = 468
183 + 492 = 675
以上都是正确的填写法!
注意:
111 + 222 = 333 是错误的填写法!
因为每个数字必须是不同的!
也就是说:1~9中的所有数字,每个必须出现且仅出现一次!
注意:
不包括数字“0”!
注意:
满足加法交换率的式子算两种不同的答案。
所以答案肯定是个偶数!
注意:
只要求计算不同的填法的数目
不要求列出所有填写法
更不要求填写源代码!

 * @author Robert
 *
 */
public class The012PutAlgorithmDemo2 {
	static List<int[]> lis = new ArrayList<int[]>();  
    // 输出所有组合   
    public static void print(){  
        for(int[] x:lis){  
            for(int y:x){  
                System.out.print(y);  
            }  
            System.out.println();  
        }  
    }  
    // 检测是否有重复元素   
    public static boolean check2(int[] n){  
        if(lis.size()==0) return false;  
        for(int i=0;i<lis.size();i++){  
            int a = n[0]*100+n[1]*10+n[2];  
            int b = lis.get(i)[3]*100+lis.get(i)[4]*10+lis.get(i)[5];  
            if(a!=b){  
                return false;  
            }  
        }  
        return true;  
    }  
    // 检测,并添加符合的组合   
    public static void check(int[] n){  
        int a = n[0]*100+n[1]*10+n[2];  
        int b = n[3]*100+n[4]*10+n[5];  
        int c = n[6]*100+n[7]*10+n[8];  
        if(a+b==c){  
            if(!check2(n)){ // 如果不重复,则添加   
//            	for(int x:n){System.out.println(x);}
                lis.add(Arrays.copyOf(n, n.length)); 
//            	lis.add(n);
            	
            }  
        }  
    }  
    // 全排列  
    public static void f(int[] n,int start,int end){  
        if(start>=end){  
            check(n);   // 检测,并添加符合的组合   
            return ;  
        }else{  
            for(int i=start;i<n.length;i++){  
                int temp = n[start];  
                n[start] = n[i];  
                n[i] = temp;  
                f(n,start+1,end);  
                //回溯
                temp = n[start];  
                n[start] = n[i];  
                n[i] = temp;  
            }  
        }  
    }  
    public static void main(String[] args){  
        int[] n = {1,2,3,4,5,6,7,8,9};  
        f(n,0,n.length-1);  
        print();    // 输出结果   
        System.out.println("总个数:"+lis.size());  // 输出个数   
    }
}

全排列函数:

   // 全排列  
    public static void f(int[] n,int start,int end){  
        if(start>=end){  
            check(n);   // 检测,并添加符合的组合   
            return ;  
        }else{  
            for(int i=start;i<n.length;i++){  
                int temp = n[start];  
                n[start] = n[i];  
                n[i] = temp;  
                f(n,start+1,end);  
                //回溯
                temp = n[start];  
                n[start] = n[i];  
                n[i] = temp;  
            }  
        }  
    }  
 

全排列函数入口(参数):

        f(n,0,n.length-1);  

全排列函数结束条件:

        if(start>=end){  
            check(n);   // 检测,并添加符合的组合   
            return ;  
        }

函数回溯过程:

else{  
            for(int i=start;i<n.length;i++){  
                int temp = n[start];  
                n[start] = n[i];  
                n[i] = temp;  
                f(n,start+1,end);  
                //回溯
                temp = n[start];  
                n[start] = n[i];  
                n[i] = temp;  
            }


同样的方法使用vector容器:

package pers.robert.lanqiaobeizhenti129;

import java.util.Vector;

/**
 * 填算式 
看这个算式:
☆☆☆ + ☆☆☆ = ☆☆☆
如果每个五角星代表 1 ~ 9 的不同的数字。
这个算式有多少种可能的正确填写方法?
173 + 286 = 459
295 + 173 = 468
173 + 295 = 468
183 + 492 = 675
以上都是正确的填写法!
注意:
111 + 222 = 333 是错误的填写法!
因为每个数字必须是不同的!
也就是说:1~9中的所有数字,每个必须出现且仅出现一次!
注意:
不包括数字“0”!
注意:
满足加法交换率的式子算两种不同的答案。
所以答案肯定是个偶数!
注意:
只要求计算不同的填法的数目
不要求列出所有填写法
更不要求填写源代码!

 * @author Robert
 *
 */
public class The012PutAlgorithmDemo1 {
	public static int count;
	public static void AllType(Vector<Character> sourse,Vector<Character>result) {
		if(sourse.size()==0){
			//System.out.println(result);
			int a=(result.elementAt(0)-'0')*100+(result.elementAt(1)-'0')*10+result.elementAt(2)-'0';
			int b=(result.elementAt(3)-'0')*100+(result.elementAt(4)-'0')*10+result.elementAt(5)-'0';
			int c=(result.elementAt(6)-'0')*100+(result.elementAt(7)-'0')*10+result.elementAt(8)-'0';
			if(a+b==c){
				System.out.printf("%d + %d = %d\n",a,b,c);
				count++;
			}
		}else{
			for (int i = 0; i < sourse.size(); i++) {
				result.add(sourse.elementAt(i));
				sourse.remove(i);
				AllType(sourse, result);
				sourse.add(i, result.elementAt(result.size()-1));
				result.remove(result.size()-1);
			}
		}
	}
	public static void main(String[] args) {
		Vector<Character>sourse=new Vector<Character>();
		Vector<Character>result=new Vector<Character>();
		for (int i = 1; i <= 9; i++) {
			sourse.add((char)('0'+i));
		}
		AllType(sourse, result);
		System.out.println(count);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值