package pers.robert.lanqiaobeizhenti129;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* 填算式
看这个算式:
☆☆☆ + ☆☆☆ = ☆☆☆
如果每个五角星代表 1 ~ 9 的不同的数字。
这个算式有多少种可能的正确填写方法?
173 + 286 = 459
295 + 173 = 468
173 + 295 = 468
183 + 492 = 675
以上都是正确的填写法!
注意:
111 + 222 = 333 是错误的填写法!
因为每个数字必须是不同的!
也就是说:1~9中的所有数字,每个必须出现且仅出现一次!
注意:
不包括数字“0”!
注意:
满足加法交换率的式子算两种不同的答案。
所以答案肯定是个偶数!
注意:
只要求计算不同的填法的数目
不要求列出所有填写法
更不要求填写源代码!
* @author Robert
*
*/
public class The012PutAlgorithmDemo2 {
static List<int[]> lis = new ArrayList<int[]>();
// 输出所有组合
public static void print(){
for(int[] x:lis){
for(int y:x){
System.out.print(y);
}
System.out.println();
}
}
// 检测是否有重复元素
public static boolean check2(int[] n){
if(lis.size()==0) return false;
for(int i=0;i<lis.size();i++){
int a = n[0]*100+n[1]*10+n[2];
int b = lis.get(i)[3]*100+lis.get(i)[4]*10+lis.get(i)[5];
if(a!=b){
return false;
}
}
return true;
}
// 检测,并添加符合的组合
public static void check(int[] n){
int a = n[0]*100+n[1]*10+n[2];
int b = n[3]*100+n[4]*10+n[5];
int c = n[6]*100+n[7]*10+n[8];
if(a+b==c){
if(!check2(n)){ // 如果不重复,则添加
// for(int x:n){System.out.println(x);}
lis.add(Arrays.copyOf(n, n.length));
// lis.add(n);
}
}
}
// 全排列
public static void f(int[] n,int start,int end){
if(start>=end){
check(n); // 检测,并添加符合的组合
return ;
}else{
for(int i=start;i<n.length;i++){
int temp = n[start];
n[start] = n[i];
n[i] = temp;
f(n,start+1,end);
//回溯
temp = n[start];
n[start] = n[i];
n[i] = temp;
}
}
}
public static void main(String[] args){
int[] n = {1,2,3,4,5,6,7,8,9};
f(n,0,n.length-1);
print(); // 输出结果
System.out.println("总个数:"+lis.size()); // 输出个数
}
}
全排列函数:
// 全排列
public static void f(int[] n,int start,int end){
if(start>=end){
check(n); // 检测,并添加符合的组合
return ;
}else{
for(int i=start;i<n.length;i++){
int temp = n[start];
n[start] = n[i];
n[i] = temp;
f(n,start+1,end);
//回溯
temp = n[start];
n[start] = n[i];
n[i] = temp;
}
}
}
全排列函数入口(参数):
f(n,0,n.length-1);
全排列函数结束条件:
if(start>=end){
check(n); // 检测,并添加符合的组合
return ;
}
函数回溯过程:
else{
for(int i=start;i<n.length;i++){
int temp = n[start];
n[start] = n[i];
n[i] = temp;
f(n,start+1,end);
//回溯
temp = n[start];
n[start] = n[i];
n[i] = temp;
}
同样的方法使用vector容器:
package pers.robert.lanqiaobeizhenti129;
import java.util.Vector;
/**
* 填算式
看这个算式:
☆☆☆ + ☆☆☆ = ☆☆☆
如果每个五角星代表 1 ~ 9 的不同的数字。
这个算式有多少种可能的正确填写方法?
173 + 286 = 459
295 + 173 = 468
173 + 295 = 468
183 + 492 = 675
以上都是正确的填写法!
注意:
111 + 222 = 333 是错误的填写法!
因为每个数字必须是不同的!
也就是说:1~9中的所有数字,每个必须出现且仅出现一次!
注意:
不包括数字“0”!
注意:
满足加法交换率的式子算两种不同的答案。
所以答案肯定是个偶数!
注意:
只要求计算不同的填法的数目
不要求列出所有填写法
更不要求填写源代码!
* @author Robert
*
*/
public class The012PutAlgorithmDemo1 {
public static int count;
public static void AllType(Vector<Character> sourse,Vector<Character>result) {
if(sourse.size()==0){
//System.out.println(result);
int a=(result.elementAt(0)-'0')*100+(result.elementAt(1)-'0')*10+result.elementAt(2)-'0';
int b=(result.elementAt(3)-'0')*100+(result.elementAt(4)-'0')*10+result.elementAt(5)-'0';
int c=(result.elementAt(6)-'0')*100+(result.elementAt(7)-'0')*10+result.elementAt(8)-'0';
if(a+b==c){
System.out.printf("%d + %d = %d\n",a,b,c);
count++;
}
}else{
for (int i = 0; i < sourse.size(); i++) {
result.add(sourse.elementAt(i));
sourse.remove(i);
AllType(sourse, result);
sourse.add(i, result.elementAt(result.size()-1));
result.remove(result.size()-1);
}
}
}
public static void main(String[] args) {
Vector<Character>sourse=new Vector<Character>();
Vector<Character>result=new Vector<Character>();
for (int i = 1; i <= 9; i++) {
sourse.add((char)('0'+i));
}
AllType(sourse, result);
System.out.println(count);
}
}