HDU-1004令人蛋疼的IO

9 篇文章 0 订阅
9 篇文章 0 订阅

第一次开始学习使用STL模板..感觉这东西好像跟JDK中的类库一样重要..都应该下大力气去掌握...

另外在这次代码编辑中又发现了一件令人蛋疼无比的事情..也有一个非常重要的收获..兹记于此.

/*
*Author:Rock Lee
*Date:2012.5.24
*Review at 2012.8.7
*Problem 1004(HDU):"Let the ballon rise"
*/

#include <iostream>
#include <map>
#include <string>

using namespace std;
int main()
{
    freopen(".\\1004in.txt","r",stdin);
    string tempStr;
    int n;

    while(cin>>n)//这里一开始错成了while(cin>>n,n!=0),个人感觉逻辑上没错误,为什么通不过..
    {
        if(n==0)
            break;
        map<string,int> colorMap;//key为color名称,int为color出现过的次数
        //cout<<"The scale of the problem this time is: "<<n<<endl;

        int maxNum=-1;
        map<string,int>::iterator iter;
        while(n--!=0)
        {
            //getline(cin,tempStr,'\n');//难道是这一句的问题?输入输出的问题一定要解决
            cin>>tempStr;
            /**
            问题果然出在上面一句上.如果用getline方法,不知为何cin的指针不会向前移动
            得到的结果是所有n均为第一个值..这个具体是为什么..我也弄不清楚
            */

            iter=colorMap.find(tempStr);
            if(iter==colorMap.end())//如果这个元素以前未出现过
            {
                //cout<<"colorMap[tempStr]=1;"<<endl;
                colorMap.insert(pair<string,int>(tempStr,1));
            }
            else//这元素以前出现过
            {
                //cout<<"找到了颜色:"<<tempStr<<"\t处理之前的个数:"<<iter->second<<endl;
                colorMap[tempStr]=colorMap[tempStr]+1;
                //cout<<tempStr<<"处理后的个数:"<<iter->second<<endl;
            }
        }//End of the Input

        for(iter=colorMap.begin();iter!=colorMap.end();iter++)
        {
            int tempNum=iter->second;
            if(maxNum<tempNum)
            {
                maxNum=tempNum;//记录最大的出现次数
                tempStr=iter->first;//同时记录他在map中的key(颜色)
            }
        }
        //cout<<"this time maxNum is:"<<maxNum<<endl;
        cout<<tempStr<<endl;
    }

    return 0;

}


谈几点收获吧:1.首先就是用freopen在本地用线程的输入将cin/cout等标准输入输出流进行重定向是非常有用的..不至于在OJ的黑盒测试面前像老鼠找不到洞一样而半天无法发现自己的程序错误,尤其是在IO与Format这两方面的调试有极其重要的意义.(感谢gneveek, 前辈的解题报告在此...)

                         2.其次就是不知为何getline方法在这里竟然没有起到改变文件流的指针的作用..这真是奇葩..在CSDN前人已经有人提出过此问题了:见帖子:

http://topic.csdn.net/u/20071219/02/0728e0df-6725-49bd-9dc7-8d34679d606e.html

不知为何自己就是无法解决这个所谓能够移动文件流指针的getline的问题..最后无奈之下返璞归真用了cin>>tempString了事.

                        3.对比gneveek前辈的解题思路..自己的拙劣部分在于没有很好的利用STL的类库中的排序算法..还要自己手动去实现..这是在是一件不怎么光彩与值得炫耀的的事情..以后要多多参考前辈的解题例子..而且还要尽量摆脱对c++封装好的流的依赖..而是使用底层的C再把此题写一遍.

 

 

 

 

微信扫码订阅
UP更新不错过~
关注
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宇明君寻

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值