- 博客(490)
- 收藏
- 关注
原创 深入浅出解析Stable Diffusion完整核心基础知识 | 【算法兵器谱】
深入浅出讲解Stable Diffusion的核心基础知识,快速入门AI绘画,就在本文。
2023-05-28 18:40:34
249
原创 在疯狂三月之后,深入浅出分析AIGC的核心价值 (下篇)|【AI行研&商业价值分析】
AI行业的「iPhone 时刻」和中国AI行业的「抗美援朝时刻」(下篇)
2023-05-20 18:30:49
103
原创 【三年面试五年模拟】算法工程师的独孤九剑秘籍(第十二式)
【三年面试五年模拟】栏目专注于分享AI行业中实习/校招/社招维度的必备面积知识点与面试方法,并向着更实战,更真实,更从容的方向不断优化迭代。也欢迎大家提出宝贵的意见或优化ideas,一起交流学习💪
2023-01-15 12:25:49
175
原创 【Make YOLO Great Again】最终版本YOLOv1-v7全系列大解析(全网最详细汇总篇)
全网最详细YOLOv1-v7全系列大解析汇总篇
2022-12-11 15:56:56
1820
原创 【Make YOLO Great Again】YOLOv1-v7全系列大解析(Tricks篇)
YOLOv1-v7 Tricks解析,包含全系列网络完整版结构图。
2022-11-13 15:58:39
546
原创 【Make YOLO Great Again】YOLOv1-v7全系列大解析(Backbone篇)
YOLOv1-v7全系列Backbone大解析(全网最全)(YOLO系列完整版网络图)
2022-10-16 20:51:22
1439
原创 【Make YOLO Great Again】YOLOv1-v7全系列大解析(Head篇)(完整版)
YOLOv1-v7全系列大解析(Head篇)完整版大放送!!!
2022-08-28 16:32:02
2254
原创 【Make YOLO Great Again】YOLOv1-v7全系列大解析(Neck篇)
YOLOv1-v7的Neck侧结构知识全解析,包含全系列的Neck侧网络结构图。
2022-07-31 23:58:02
1631
原创 【CV算法内功】工业界AI项目落地方法论的总结与思考
这是我写在公众号里的一篇文章,在此分享到CSDN上,一来是希望能和CSDN上的朋友们一起交流学习CV算法以及相应的知识,也欢迎大家关注我的公众号WeThinkIn。【CV算法内功】工业界AI项目落地方法论的总结与思考【CV算法内功】栏目专注于分享关于CV算法与机器学习在业务侧,研究侧,学习侧的一些经验与总结心得,欢迎大家一起交流学习图片大家好,我是Rocky。当我提笔写这篇文章的时候,难免会想起我接触的第一个AI算法项目,那是2019年的春天,我还是研一的学生。一晃3年过去了,学生时期我在国企,传统IT企业
2022-07-06 23:36:55
352
1
原创 【CV算法内功】获得CVPR2022 workshop双赛道冠军之后的总结与思考
这是我写在公众号里的一篇文章,在此分享到CSDN上,一来是希望能和CSDN上的朋友们一起交流学习CV算法以及相应的知识,也欢迎大家关注我的公众号WeThinkIn。公众号原文:【CV算法内功】获得CVPR2022 workshop双赛道冠军之后的总结与思考【CV算法内功】栏目专注于分享关于CV算法与机器学习在业务侧,研究侧,学习侧的一些经验与总结心得,欢迎大家一起交流学习大家好,我是Rocky。我们团队参加了CVPR2022 workshop的算法竞赛,在AI安全方向获得了双赛道的冠军。在压力,竞争,学习,
2022-06-19 17:33:25
1214
2
原创 【人人都是算法工程师】算法工程师的“三年面试五年模拟”之独孤九剑秘籍(先行版)
这是我写在公众号里的一篇文章,在此分享到知乎上,一来是希望能和知乎上的朋友们一起交流学习CV算法以及相应的知识,也欢迎大家关注我的公众号WeThinkIn。
2022-06-12 22:34:52
507
1
原创 【CV算法兵器】“晓风残月” ->对抗攻击“兵器”大放送(综述篇)
0 导读随着深度学习与AI算法在工业界不断落地,AI安全已经成为一个算法解决方案的重要关注方向。在此将我的公众号文章分享到CSDN上,希望能和CSDN上的朋友们一起交流学习CV算法以及相应的知识。也欢迎大家关注我的公众号WeThinkIn。公众号原文:【CV算法兵器】“晓风残月” ->对抗攻击“兵器”大放送(综述篇)1 写在前面【CV算法兵器】栏目专注于分享CV算法与机器学习相关的核心模型,高价值论文以及工业界经典的工作,欢迎大家一起交流学习大家好,我是Rocky。汉唐盛世,英雄辈出。长
2022-04-06 00:58:28
625
原创 【AI行业进展研究与商业价值分析】系列之2021.12.04第一期|(元宇宙以及其中的AI可能性)
【AI行业进展研究与商业价值分析】系列之2021.12.04第一期|(元宇宙以及其中的AI可能性)上面是我的公众号原文。
2021-12-04 22:49:12
285
原创 Windows命令_将文件夹及其子文件夹中的所有图片路径输出到TXT文件中
dir /s/b *.jpg>list.txt具体参数意义如下:dir 显示目录中的文件和子目录列表/s 显示指定目录和所有子目录中的文件/b 显示文件夹或文件的名字*是通配符,可以代表任意字符串,本语境中代表所有的.jpg文件...
2021-05-17 16:49:59
634
原创 个人微信公众号:WeThinkIn。专注于算法的工程实践与核心技术文章分享
大家好,我开始运营微信公众号啦,欢迎大家关注我的微信公众号:WeThinkIn,希望能继续和大家一起交流计算机视觉算法相关的话题。我运营公众号主要是三个方面的考虑:总结自己平时工作中的心得体会;与计算机视觉算法领域乃至机器学习算法领域的小伙伴一起交流学习;让对算法岗有兴趣,准备进行学习的小伙伴提供一些有用的思考。目前,我会在公众号中分享三个方面的内容:4. 计算机视觉算法领域的相关技术知识;5. 机器学习&&深度学习算法工程;6. 计算机视觉算法领域的前沿论文、竞赛等。
2021-05-09 23:00:27
296
7
原创 机器学习_L1loss、L2loss以及smooth L1loss
通常情况下,我们一般使用L2loss,因为L2loss的收敛速度要比L1loss快很多。L2loss的缺点是在训练过程中存在离群点时,这些点占据loss的主要部分,从而造成训练波动甚至失败。L1loss在0点处导数不唯一,可能影响模型训练时收敛。smooth L1loss在较大的范围里使用较为缓和的线性增长,来避免L2loss的问题,而在0点处使用平方函数来使其更加平滑,训练收敛更加稳定,更容易收敛到局部最优,而不会跳出局部最优。接下来我们看一下其各自的公式:...
2021-03-26 00:53:01
981
1
原创 Linux_Linux环境下运行.sh文件的方法
在我们平时进行深度学习模型训练和代码编写时,经常在Linux系统环境下,我们可以将代码运行逻辑封装成一个.sh文件,这样一来,只需要调用.sh文件就可以进行我们想要的整个代码逻辑,非常方便。那么如何运行.sh文件以及有哪些注意事项呢?首先,我们有两种运行.sh文件的方法:直接在.sh文件的目录下,输入./name.sh即可,注意这时name.sh文件必须要有x权限(执行权限)。第二种方法是使用sh来执行:sh name.sh,这时name.sh文件可以没有x权限。当name.sh文件没有x权限
2021-03-17 20:49:05
363
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人