数学基础_若要使骰子(六个面)的每个数都出现至少一次,那么平均需要掷多少次骰子?

本文详细解析了掷骰子直到所有数字至少出现一次的问题。通过分解目标变量并利用几何分布的性质,推导出了期望掷骰子次数的精确计算公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记每个数字都出现(首次出现)的总数为X,题目中的意思也就是求E(X).由于X的分布相当复杂,我们就绕开它,考虑将X分解。

令X1 = 1,它表示出现第一个数字需要掷的次数。注意:这里第一个数字是指第一个出现的数字,并不是指哪一个固定的数字,所以才有X1 = 1。

然后以X2表示为了掷出第二个数字(即只要不是第一个出现的那个数字)再需要掷的次数。同样地,以X3表示为了掷出第三个数字(即除了前面两个已经出现的数字外,再出现的一个新数字)再需要掷的次数。以此类推,同样我们定义X4,X5,X6。这样一来,就有X = X1 + X2 + X3 + X4 + X5 + X6。

所以我们可以推出E(X) = E(X1 + X2 +X3 + X4 + X5 + X6) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5) + E(X6)。

易得,E(X1) = 1。Xi(i >= 2 )实际上就是等待新的数字出现需要的等待时间,服从几何分布。每次投掷时新数字出现的概率为[1 - (i -1)/6] (因为已经出现过i -1种数字),几何分布的期望值就是其概率的倒数,所以E(X2) = 6/5,E(X3) = 6/4,E(X4) = 6/3,E(X5) = 6/2,E(X6) = 6/1。

所以E(X) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5) + E(X6) =49/3

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rocky Ding*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值