记每个数字都出现(首次出现)的总数为X,题目中的意思也就是求E(X).由于X的分布相当复杂,我们就绕开它,考虑将X分解。
令X1 = 1,它表示出现第一个数字需要掷的次数。注意:这里第一个数字是指第一个出现的数字,并不是指哪一个固定的数字,所以才有X1 = 1。
然后以X2表示为了掷出第二个数字(即只要不是第一个出现的那个数字)再需要掷的次数。同样地,以X3表示为了掷出第三个数字(即除了前面两个已经出现的数字外,再出现的一个新数字)再需要掷的次数。以此类推,同样我们定义X4,X5,X6。这样一来,就有X = X1 + X2 + X3 + X4 + X5 + X6。
所以我们可以推出E(X) = E(X1 + X2 +X3 + X4 + X5 + X6) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5) + E(X6)。
易得,E(X1) = 1。Xi(i >= 2 )实际上就是等待新的数字出现需要的等待时间,服从几何分布。每次投掷时新数字出现的概率为[1 - (i -1)/6] (因为已经出现过i -1种数字),几何分布的期望值就是其概率的倒数,所以E(X2) = 6/5,E(X3) = 6/4,E(X4) = 6/3,E(X5) = 6/2,E(X6) = 6/1。
所以E(X) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5) + E(X6) =49/3