- 博客(9)
- 收藏
- 关注
原创 Mac 安装 XGBoost Python库
Mac 安装 XGBoost Python库1使用终端输入: git clone --recursive https://github.com/dmlc/xgboost终端输出: 2.在终端输入: bash build.sh 终端输出: 3. 在终端输入: 1.cd python-package 2.sudo python setu
2017-12-19 17:39:51 426
原创 TensorFlow数据读取
二级标题TensorFlow背后的通讯机制tensorflow背后的通讯机制以及存储压缩都是基于Protobuf,包括某些定义,比如graph。Protobuf是开源的,Protocol Buffers - Google’s data interchange format下载地址数据直接嵌入graph,由graph传入session中运行,在这种情况下数据必须是小数据,一个sess
2017-09-19 17:00:41 1538
原创 TensorFlow架构系统理解
Queue机制Freload data:constantTensorFlow支持各种异构的平台,支持多CPU/GPU,服务器,移动设备,具有良好的跨平台的特性;TensorFlow架构灵活,能够支持各种网络模型,具有良好的通用性;此外,TensorFlow架构具有良好的可扩展性,对OP的扩展支持,Kernel特化方面表现出众。Google的AI战略是让更多的开发者使用tensorflow在
2017-09-16 12:57:34 2228
原创 卷积神经网络模型概念与理解
博文的编写,主要参考网上资料,并结合个人见解,仅供学习、交流使用,如有侵权,请联系博主删除,原创文章转载请注明出处。 本文简单介绍 AlexNet、GoogLeNet、VGG、ResNet四个模型AlexNetAlexNet (2012 Imagenet Champion )包含了八个学习层,五个卷积层和三个全连接层 输入数据:227×227×3 卷积核:11×11×3;步长:4;数量(
2017-09-12 19:47:23 1074
原创 卷积神经网络概念与原理和相关数据集
博文的编写,主要参考网上资料,并结合个人见解,仅供学习、交流使用,如有侵权,请联系博主删除,原创文章转载请注明出处。 前往斯坦福课程官网查看:CS231n视觉识别的卷积神经网络课程Image Datasets早期CIFAR-10数据集由10个类别,60000个32x32彩色图像组成,每个类别有6000个图像。有50000个训练图像和10000个测试图像CIFAR-10数据集下载地址2.CIFA
2017-09-11 18:46:30 1343
原创 LSTM循环神经网络/长短时记忆
Long short-term memoryLSTM中的重复模块四个交互的层 1.绿色的单元可以理解为tensorflow里的基本单元。每个cell底下Xt-1,Xt,Xt+1表示这是一个序列的数据,在每个时间点上都会有一个输入,如果这个问题对应到文本当中可能的xt对应的就是word,如果是对一个用户的行为序列去建模,那么这个Xt对应的就是每个用户的一个行为。RNN算法结构其实就是是一套时序神经
2017-09-06 21:59:51 2534
原创 TensorBoard
核心概念Graph和SessionData Flow Graph 表示多个操作之间的数据依赖关系的图形。任何算法都由一些有序的操作组成可以逐行实现这个算法,实现会注意到每个操作之间的依赖关系节点是发送和接收数据消息的计算,计算定义≠执行计算 ,计算的定义和执行,被很好地分离开了SessionSession是Graph和执行者之间的媒介在session当中执行图中的运算,包含了操作对象执行
2017-09-06 11:25:39 324
原创 RCNN,Fast-RCNN,Faster-RCNN,SSD,DPM检测框架
现在最主流的检测框架主流检测框架RCNN,Fast-RCNN,Faster-RCNN 现在最主流的检测框架TLD,非常鲁棒的跟踪算法SSD,达到实时的检测算法DPM,早期的检测算法,使用latent SVM
2017-09-05 17:43:22 519
原创 使用TensorFlow实现简单的线性回归(LinearRegression)
线性模型基本形式 :线性回归属于回归算法,表达监督学习的过程。通过属性的线性组合来预测函数:f(x)=w1x1+w2x2+...+wdxd+b \bbox[,5px,border:1px solid black]{{f(x)} = {w_1x_1+w_2x_2+...+w_dx_d}+{b}}一般向量形式写成:f(x)=wTx+b \bbox[,5px,border:1px solid
2017-09-02 15:15:48 2719
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人