『状压DP·dilworth定理』BZOJ4160:Exclusive Access 2

该博客介绍了如何应用dilworth定理解决无向图定向成有向无环图,使最长路径最短的问题。通过解释dilworth定理的原理,即最长路径等于最小反链划分,提出了使用状压DP的方法来求解。文章还提到了最长反链与最小路径覆盖的关系,并给出了状态转移方程。
摘要由CSDN通过智能技术生成

P r o b l e m \mathrm{Problem} Problem

给出 N 个点M 条边的无向图,定向得到有向无环图,使得最长路最短。

S o l u t i o n \mathrm{Solution} Solution

现在有一个定理叫做dilworth定理。具体的内容是这样的:

  • 最长路径(点的个数) = 最小反链划分
    一个集合为反链表示这个集合任意两点不能连通。最小反链划分表示整个图最少由多少个反链来划分。其中这张图是确定的,因此最小反链划分唯一。

由于这道题中,我们由于需要将图定向以后,得到最小反链划分的最小值,我们需要通过状压DP解决。

f [ i ] f[i] f[i]表示状态i是否是一个反链, g [ i ] g[i] g[i]表示对于状态i划分的最少反链数。

这样就有: g [ i ] = g [ i ′ ] + 1 , f [ i ] = 1 , i ′ ⊆ i g[i]=g[i']+1,f[i]=1,i'\subseteq i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值