『KMP·Next树』[NOI2014]动物园

本文介绍了KMP算法,并引入Next树的概念。通过Next树的性质,解释了如何利用Next数组来优化KMP匹配过程,同时提供了处理重复情况的策略。文章包含问题描述、解决方案及代码实现。
摘要由CSDN通过智能技术生成

P r o b l e m \mathrm{Problem} Problem

在这里插入图片描述

S o l u t i o n \mathrm{Solution} Solution

题目已经很明了了,可以知道这是一个KMP算法。在这里,我们引入next树的概念。

对于KMP中的某一个位置 i i i,令 i i i n e x t [ i ] next[i] next[i]连边,这样就形成了Next数。其中 0 0 0号点表示空节点。

Next树有一下性质:

  • 每一个节点的所有祖先(根节点除外)既是当前串的前缀也是当前串的后缀。
  • 每一个节点的num数组即为祖先节点的数量。

显然,我们没有必要建出Next树,我们只需要令 n u m [ i ] = n u m [ n e x t [ i ] ] + 1 num[i]=num[next[i]]+1 num[i]=num[next[i]]+1即可。

当然为了处理重复,当前节点的长度大于总串长度的一半就跳到父亲节点,知道小于等于一般为止。

代码如下:

#include <cstdio>
#include <string.h>
#include <iostream>

using namespace std;
const int N = 2e6;
const int P = 1e9 + 7;

int n;
char a[N];
int cnt[N], next[N];

void work(void)
{
	int ans = 1;
	cin>>a+1;
	n = strlen(a+1);
	next[1] = (cnt[1] = 1) - 1;
	for (int i=2,j=0;i<=n;++i)
	{
		while (j > 0 && a[i] != a[j+1]) j = next[j];
		if (a[i] == a[j+1]) j ++;
		next[i] = j, cnt[i] = cnt[j] + 1;
	}
	for (int i=2,j=0;i<=n;++i)
	{
		while (j > 0 && a[i] != a[j+1]) j = next[j];
		if (a[i] == a[j+1]) j ++;
		while (j > i / 2) j = next[j];
		ans = 1LL * ans * (cnt[j]+1) % P;  
	}
	cout<<ans<<endl;
	return;
}

int main(void)
{
	freopen("zoo.in","r",stdin);
	freopen("zoo.out","w",stdout);
	int T; cin>>T;
	while (T --) work();
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值