『边双连通分量·树上差分』CF555E Case of Computer Network

P r o b l e m \mathrm{Problem} Problem

  • 给定一张 n n n 个点 m m m 条边的无向图。

  • 给定 q q q 组有向点对 ( s , t ) (s, t) (s,t)

  • 询问是否存在使得所有 s s s 都能到达 t t t 的无向图中每条边的定向方案。

  • n , m , q ≤ 2 × 1 0 5 n,m,q \le 2 \times 10^5 n,m,q2×105


S o l u t i o n \mathrm{Solution} Solution

如果形态是一棵树:我们可以对每一条路径进行两个属性的差分:

  • 那么某一个边同时被两种不同的边经过则说明无解。

我们考虑如何将问题浓缩成一棵树。

  • 若两个点之间存在至少两条边不同的路径,那么就一定有解。
  • 边双内的任意两点显然满足上述条件。

因此,我们考虑使用边双缩点,直接用上面的方法进行树上差分即可。

注意要特判不连通的情况。


C o d e \mathrm{Code} Code

#include <bits/stdc++.h>

using namespace std;
const int N = 6e5;

int n, m, cnt, tot(1), q, k;
int size[N], fa[N], f[N], dep[N], top[N], Fa[N];
int low[N], dfn[N], Link[N], b[N], son[N], g[N], fak[N];
struct node { int x, y, next; } e[N]; 
vector < int > a[N];

int read(void)
{
	int s = 0, w = 0; char c = getchar();
	while (!isdigit(c)) w |= c == '-', c = getchar();
	while (isdigit(c)) s = s*10+c-48, c = getchar();
	return w ? -s : s;
}

void add(int x, int y) {
	e[++ tot] = {x, y, Link[x]};
	Link[x] = tot;
}

void tarjan(int x, int last)
{
	low[x] = dfn[x] = ++ cnt;
	for (int i=Link[x];i;i=e[i].next)
	{
		int y = e[i].y;
		if (dfn[y] == 0) {
			tarjan(y, i);
			low[x] = min(low[x], low[y]);
			if (dfn[x] < low[y]) b[i] = b[i^1] = 1;
		}
		else if ((i ^ 1) != last)
			low[x] = min(low[x], dfn[y]);
	}
	return;
}


int find(int x) {
	if (fak[x] == x) return x;
	return fak[x] = find(fak[x]);
}

int get(int x) {
	if (fa[x] == x) return x;
	return fa[x] = get(fa[x]);
}

void add1(int x, int y) {
	x = get(x), y = get(y);
	a[x].push_back(y);
	a[y].push_back(x);
	fak[find(x)] = find(y);
}

void Dfs1(int x, int f)
{
	int Max = 0;
	Fa[x] = f, size[x] = 1;
	dep[x] = dep[Fa[x]] + 1;
	for (int i=0;i<a[x].size();++i)
	{
		int y = a[x][i];
		if (y == Fa[x]) continue;
		Dfs1(y, x), size[x] += size[y];
		if (size[y] > Max) Max = size[son[x] = y];
	}
	return;
}

void Dfs2(int x, int cur)
{
	top[x] = cur;
	if (son[x]) Dfs2(son[x], cur);
	for (int i=0;i<a[x].size();++i)
	{
		int y = a[x][i];
		if (y == son[x] || y == Fa[x]) continue;
		Dfs2(y, y);
	}
	return;
}

int LCA(int x, int y)
{
	while (top[x] != top[y])
	{
		if (dep[top[x]] < dep[top[y]]) swap(x, y);
		x = Fa[top[x]];
	}
	return dep[x] < dep[y] ? x : y;
}

void Dfs3(int x, int fa)
{
	for (int i=0;i<a[x].size();++i)
	{
		int y = a[x][i];
		if (y == fa) continue;
		Dfs3(y, x);
		f[x] += f[y];
		g[x] += g[y];
	}
	if (f[x] > 0 && g[x] > 0) {
		puts("No");
		exit(0); 
	}
	return;
}
 
void add(void)
{
	int x = read(), y = read();
	x = get(x), y = get(y);
	if (find(x) != find(y)) {
		puts("No");
		exit(0);
	}
	int root = LCA(x, y);
	f[x] ++, f[root] --;
	g[y] ++, g[root] --;
	return;
}

int main(void)
{
	n = read(), m = read(), k = read();
	for (int i=1;i<=m;++i)
	{
		int x = read(), y = read();
		add(x, y), add(y, x);
	}
	for (int i=1;i<=n;++i)
		if (!dfn[i]) tarjan(i, 0);
	for (int i=1;i<=n;++i) fa[i] = i;
	for (int i=2;i<=tot;i+=2)
		if (b[i] == 0) fa[get(e[i].x)] = get(e[i].y);
	for (int i=1;i<=n;++i) fak[i] = i;
	for (int i=2;i<=tot;i+=2)
		if (b[i] == 1) add1(e[i].x, e[i].y);
	Dfs1(get(1), 0);
	Dfs2(get(1), get(1));
	while (k --) add(); 
	Dfs3(get(1), 0);
	puts("Yes");
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值