Problem
题目描述
MM 虽然一辈子只要一个,但是也得早点解决。于是,n 个光棍们自发组成了一个光棍组织 (ruffian organization,By Wind 乱译)。现在,光棍们打算分成几个小组,并且分头为 找 MM 事
业做贡献(For example:searching,hunting……By Wind 乱译)。 对于这 n 个光棍的任意一个组合,都有一个被称为“和谐度”的东西,现在,他们想知道, 如何分组
可以使和谐度总和最大。 每个光棍都必须属于某个分组,可以一个人一组。
输入格式
第 1 行为 n,接下来 2^n-1 行,按照 2 进制给出每个分组的和谐度。
(比如接下来第 5 行,也就是总共第六行,2 进制为 00000101,则表示第 1 个人和第 3 个人 这个分
组的和谐度,第 31 行则为 1~5 在一起的和谐度)
输出格式
仅 1 行,为最大和谐度和。
题解
首先,需要引入一个子集的概念。
当一个二进制数 s s s,若 s o r k = s s\ or\ k=s s or k=s且 k ≠ s k≠s k̸=s,我们则称 k k k是 s s s的一个子集。
也可以这么理解,一个二进制数的子集是这个数将若干个 1 1 1变成 0 0 0。
子集的代码如下:
for (int j=(i-1)&i;j;j=(j-1)&i)
这句话用 j j j来枚举 i i i的子集。至于这句话具体的含义我也没有理解。
子集的一个性质就是可以直接用 i − j i-j i−j,即 j j j表示 i i i的子集, i − j i-j i−j表示剩下的集合。
写下来回归本题:
我们可以直接设 f [ i ] f[i] f[i]表示所有组团中,组团状态为i的最大价值。
在所有已经组团的队伍中,组了队的人为 1 1 1,没组队的人为 0 0 0。
现在考虑状态转移方程,每一个状态一定都是若干个它的子集组合而成的,所以:
f
[
i
]
=
m
a
x
(
f
[
j
]
+
f
[
i
−
j
]
)
f[i]=max(f[j]+f[i-j])
f[i]=max(f[j]+f[i−j])
由于集合是顺序枚举的,枚举
i
i
i时
i
−
j
i-j
i−j的状态已经被枚举到了。
代码如下:
#include<bits/stdc++.h>
using namespace std;
int n;
int f[1<<17];
int main(void)
{
freopen("organise.in","r",stdin);
freopen("organise.out","w",stdout);
scanf("%d",&n);
for (int i=1;i<(1<<n);++i) scanf("%d",f+i);
for (int i=1;i<(1<<n);++i)
for (int j=(i-1)&i;j;j=(j-1)&i)
f[i]=max(f[i],f[i-j]+f[j]);
printf("%d\n",f[(1<<n)-1]);
return 0;
}