『数学推导·平面DP』「NOI1999」棋盘分割

题目描述

在这里插入图片描述

题解

这道题难就难在这一个均方差公式怎么搞,我们不妨对这一个算式进行化简。

在这里插入图片描述

= ∑ ( x i 2 − 2 ∗ x i ∗ x ‾ + n ∗ x ‾ 2 ) n =\sqrt \frac{\sum (x_i^2-2*x_i*\overline x+n*\overline x^2)}{n} =n(xi22xix+nx2)
= ∑ x i 2 − 2 ∗ ∑ x i ∗ x ‾ + n ∗ x ‾ 2 n =\sqrt \frac{\sum x_i^2-2*\sum x_i*\overline x+n*\overline x^2}{n} =nxi22xix+nx2
= ∑ x i 2 − 2 ∗ n ∗ x ‾ ∗ x ‾ + n ∗ x ‾ ∗ x ‾ n =\sqrt \frac{\sum x_i^2-2*n*\overline x*\overline x+n*\overline x*\overline x}{n} =nxi22nxx+nxx
= ∑ x i 2 − n ∗ x ‾ ∗ x ‾ n =\sqrt \frac{\sum x_i^2-n*\overline x*\overline x}{n} =nxi2nxx
= ∑ x i 2 n − x ‾ 2 =\sqrt{\frac{\sum x_i^2}{n}-\overline x^2} =nxi2x2

推到这里就很简洁明了啦!我们只要求解 ∑ x i \sum x_i xi的最小值即可。也就是每一个区域的平方和最小,这个用平面DP的方法可以很简单的得到,这里就不说了。

代码如下:

#include <iostream>
#include <cstdio>
#include <cmath>

using namespace std;
const int N = 10;

int n = 8, m;
int a[N][N], f[N][N][N][N][20];

int s(int A,int b,int c,int d)
{
	int sum = a[c][d] - a[A-1][d] - a[c][b-1] + a[A-1][b-1];
	return sum * sum;
}

int main(void)
{
	freopen("input.in","r",stdin);
	freopen("output.out","w",stdout);
	cin >> m;
	for (int i=1;i<=n;++i)
	    for (int j=1;j<=n;++j)
		    cin>>a[i][j], a[i][j] = a[i-1][j]+a[i][j-1]-a[i-1][j-1]+a[i][j];
	for (int r=1;r<=m;++r)
	for (int i=1;i<=n;++i)
	for (int j=1;j<=n;++j)
	for (int k=i;k<=n;++k)
	for (int t=j;t<=n;++t)
	{
	    if (r == 1) { f[i][j][k][t][r] = s(i,j,k,t); continue; };
	    f[i][j][k][t][r] = 1e9;
	    for (int p=i;p<k;++p) f[i][j][k][t][r] = min(f[i][j][k][t][r],f[i][j][p][t][r-1]+s(p+1,j,k,t));
		for (int p=i;p<k;++p) f[i][j][k][t][r] = min(f[i][j][k][t][r],f[p+1][j][k][t][r-1]+s(i,j,p,t));
		for (int p=j;p<t;++p) f[i][j][k][t][r] = min(f[i][j][k][t][r],f[i][j][k][p][r-1]+s(i,p+1,k,t));
		for (int p=j;p<t;++p) f[i][j][k][t][r] = min(f[i][j][k][t][r],f[i][p+1][k][t][r-1]+s(i,j,k,p));	
	}
	int ans = f[1][1][8][8][m];
	int sum = s(1,1,8,8);
	printf("%.3lf",sqrt(ans*1.0/(m*1.0)-sum*1.0/(m*m*1.0)));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值