[bzoj3289][树状数组][莫队算法]Mato的文件管理

21 篇文章 0 订阅
13 篇文章 0 订阅

Description

Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号。为了防止他人偷拷,这些资料都是加密过的,只能用Mato自己写的程序才能访问。Mato每天随机选一个区间[l,r],他今天就看编号在此区间内的这些资料。Mato有一个习惯,他总是从文件大小从小到大看资料。他先把要看的文件按编号顺序依次拷贝出来,再用他写的排序程序给文件大小排序。排序程序可以在1单位时间内交换2个相邻的文件(因为加密需要,不能随机访问)。Mato想要使文件交换次数最小,你能告诉他每天需要交换多少次吗?

Input

第一行一个正整数n,表示Mato的资料份数。 第二行由空格隔开的n个正整数,第i个表示编号为i的资料的大小。
第三行一个正整数q,表示Mato会看几天资料。 之后q行每行两个正整数l、r,表示Mato这天看[l,r]区间的文件。

Output

q行,每行一个正整数,表示Mato这天需要交换的次数。

Sample Input

4
1 4 2 3
2
1 2
2 4

Sample Output

0
2

HINT

Hint

n,q <= 50000

样例解释:第一天,Mato不需要交换

第二天,Mato可以把2号交换2次移到最后。

题解

看着就很像是求逆序对数
实际上也就是求逆序对,可以证明需要移动的次数=逆序对数
在不带修改的情况下,当然树状数组求逆序对最方便了。再观察一下范围,q<=50000,果断莫队
分四种情况讨论
队列最右边加数时,答案增加数为队列中比该数大的数的个数
队列最右边减数时,答案减少数为队列中比该数大的数的个数
队列最左边加数时,答案增加数为队列中比该数小的数的个数
队列最左边减数时,答案减少数为队列中比该数小的数的个数
分四种情况讨论即可

#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
struct node
{
    int l,r,op;
}a[51000];int block,n,m,pos[51000];
bool cmp(node n1,node n2)
{
    return pos[n1.l]==pos[n2.l]?n1.r<n2.r:pos[n1.l]<pos[n2.l];
}
struct sor
{
    int y,p;
}b[51000];
bool cmpd(sor n1,sor n2){return n1.y<n2.y;}
int c[51000],s[51000];
int lowbit(int x){return x&-x;}
void change(int x,int c)
{
    while(x<=n)
    {
        s[x]+=c;
        x+=lowbit(x);
    }
}
int findsum(int x)
{
    int ret=0;
    while(x>=1)
    {
        ret+=s[x];
        x-=lowbit(x);
    }
    return ret;
}
int answer[51000];
int ans;
int main()
{
    scanf("%d",&n);block=sqrt(n);
    for(int i=1;i<=n;i++)scanf("%d",&c[i]),b[i].y=c[i],b[i].p=i;
    sort(b+1,b+1+n,cmpd);
    for(int i=1;i<=n;i++)c[b[i].p]=i;
    for(int i=1;i<=n;i++)pos[i]=(i-1)/block+1;
    scanf("%d",&m);
    for(int i=1;i<=m;i++)scanf("%d%d",&a[i].l,&a[i].r),a[i].op=i;
    sort(a+1,a+1+m,cmp);
    ans=0;
    for(int i=a[1].l;i<=a[1].r;i++)
    {
        ans+=findsum(n)-findsum(c[i]);
        change(c[i],1);
    }
    answer[a[1].op]=ans;
    int l=a[1].l,r=a[1].r;
    for(int i=2;i<=m;i++)
    {
        while(l<a[i].l)change(c[l],-1),ans-=findsum(c[l]-1),l++;
        while(r>a[i].r)change(c[r],-1),ans-=findsum(n)-findsum(c[r]),r--;
        while(l>a[i].l)l--,ans+=findsum(c[l]-1),change(c[l],1);
        while(r<a[i].r)r++,ans+=findsum(n)-findsum(c[r]),change(c[r],1);
        answer[a[i].op]=ans;
    }
    for(int i=1;i<=m;i++)printf("%d\n",answer[i]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值