[bzoj2431][DP]逆序对数列

123 篇文章 1 订阅

Description

对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的
数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

Input

第一行为两个整数n,k。

Output

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

Sample Input

4 1

Sample Output

3

HINT

样例说明:

下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;

100%的数据 n<=1000,k<=1000

题解

神奇的dp之前从来没有想过= =
设f[i][j]为前i个数的排列,有j个逆序对存在
那么设想一下第i个数插进i-1的排列里,由于i一定比他们大
所以可以产生的逆序对数是0~i-1
那么f[i][j]=sigma(f[i-1][l])(j-(i-1)<=l<=j)
前缀和优化即可

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
const int mod=10000;
int f[1100][1100];//前i个数的排列 有j个逆序对
int sum[1100];
int n,kk; 
int main()
{
    scanf("%d%d",&n,&kk);
    memset(f,0,sizeof(f));
    f[1][0]=1;
    sum[0]=1;
    for(int i=1;i<=kk;i++)sum[i]=sum[i-1]+f[1][i];
    for(int i=2;i<=n;i++)
    {
        for(int j=0;j<=kk;j++)
        {
            if(j-(i-1)-1<0)f[i][j]=(f[i][j]+sum[j])%mod;
            else f[i][j]=(f[i][j]+(sum[j]-sum[j-(i-1)-1])+mod)%mod;
        }
        sum[0]=f[i][0];
        for(int j=1;j<=kk;j++)sum[j]=(sum[j-1]+f[i][j])%mod;
    }
    printf("%d\n",f[n][kk]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值