Description
为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动。
由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间。玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了。有人提出了扑克牌的一种新的玩法。
对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取下面一叠的第二张作为新的一叠的第三张……如此交替直到所有的牌取完。
如果对一叠6张的扑克牌1 2 3 4 5 6,进行一次洗牌的过程如下图所示: 从图中可以看出经过一次洗牌,序列1 2 3 4 5 6变为4
1 5 2 6 3。当然,再对得到的序列进行一次洗牌,又会变为2 4 6 1 3 5。
游戏是这样的,如果给定长度为N的一叠扑克牌,并且牌面大小从1开始连续增加到N(不考虑花色),对这样的一叠扑克牌,进行M次洗牌。最先说出经过洗牌后的扑克牌序列中第L张扑克牌的牌面大小是多少的科学家得胜。小联想赢取游戏的胜利,你能帮助他吗?
Input
有三个用空格间隔的整数,分别表示N,M,L (其中0< N ≤ 10 ^ 10 ,0 ≤ M ≤ 10^ 10,且N为偶数)。
Output
单行输出指定的扑克牌的牌面大小。
Sample Input
6 2 3
Sample Output
6
题解
开始打了个表想找循环节搞一搞,然后发现没有规律。。
再研究一下
每次洗牌的时候,对于位置i的牌
如果i<=n/2,那么i会移到2i处
否则i会移到2i-(n+1)处
那么其实就是每次都会移到2*i mod (n+1)处
然后上exgcd即可
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(a==0)
{
x=0;y=1;
return b;
}
else
{
LL tx,ty;
LL d=exgcd(b%a,a,tx,ty);
x=ty-(b/a)*tx;
y=tx;
return d;
}
}
LL mul(LL a,LL b,LL mod)
{
LL ret=0;
while(b)
{
if(b&1)ret=(ret+a)%mod;
a=a*2%mod;b>>=1;
}
return ret;
}
LL pow_mod(LL a,LL b,LL mod)
{
LL ans=1;a%=mod;
while(b)
{
if(b%2==1)ans=mul(ans,a,mod);
a=mul(a,a,mod);b/=2;
}
return ans;
}
LL n,m,L;
int main()
{
scanf("%lld%lld%lld",&n,&m,&L);
LL a=pow_mod(2,m,n+1),b=(n+1),K=L,x,y;
LL d=exgcd(a,b,x,y);
x=((x*(K/d))%(b/d)+(b/d))%(b/d);
printf("%lld\n",x);
return 0;
}