[bzoj3190][单调栈]赛车

6人阅读 评论(0) 收藏 举报
分类:

Description

这里有一辆赛车比赛正在进行,赛场上一共有N辆车,分别称为个g1,g2……gn。赛道是一条无限长的直线。最初,gi位于距离起跑线前进ki的位置。比赛开始后,车辆gi将会以vi单位每秒的恒定速度行驶。在这个比赛过程中,如果一辆赛车曾经处于领跑位置的话(即没有其他的赛车跑在他的前面),这辆赛车最后就可以得奖,而且比赛过程中不用担心相撞的问题。现在给出所有赛车的起始位置和速度,你的任务就是算出那些赛车将会得奖。

Input

第一行有一个正整数N表示赛车的个数。 接下来一行给出N个整数,按顺序给出N辆赛车的起始位置。
再接下来一行给出N个整数,按顺序给出N辆赛车的恒定速度。

Output

输出包括两行,第一行为获奖的赛车个数。 第二行按从小到大的顺序输出获奖赛车的编号,编号之间用空格隔开,注意最后一个编号后面不要加空格。

Sample Input

4

1 1 0 0

15 16 10 20

Sample Output

3

1 2 4

HINT

对于100%的数据N<=10000, 0<=ki<=10^9, 0<=vi<=10^9

2016.1.17新加数据一组 By Nano_ape

题解

你先把这堆赛车的s-t图像搞出来,然后不就和水平可见直线差不多的吗??
一开始我以为这堆射线是散落在第一象限里的,然后搞了搞发现原来是全部从y轴射出的。。
把射线按斜率排序,维护一个单调栈,下凸包
踢栈顶的方法有两个
1:斜率比栈顶不小,且出发点比栈顶高
2:这条直线与栈中第二个顶这条直线能完全遮蔽该直线,注意不能交于一点!
然后注意一下细节就过了???
那为什么网上都是半平面交

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
struct node
{
    double k,b;//y=kx+b
    int op;
}a[11000];int n,len;
bool cmp(node n1,node n2){return n1.k!=n2.k?n1.k<n2.k:n1.b<n2.b;}
double getpt(int u,int v){return (a[u].b-a[v].b)/(a[v].k-a[u].k);}
int sta[11000],tp;
int ans[11000];
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)scanf("%lf",&a[i].b);
    for(int i=1;i<=n;i++)scanf("%lf",&a[i].k),a[i].op=i;
    sort(a+1,a+1+n,cmp);
    sta[++tp]=1;
    for(int i=2;i<=n;i++)
    {
        while(tp)
        {
            if(a[i].k==a[sta[tp]].k && a[i].b==a[sta[tp]].b)break;
            double fx=getpt(i,sta[tp]),gx=getpt(sta[tp],sta[tp-1]);
            if((a[i].k>=a[sta[tp]].k && a[i].b>a[sta[tp]].b) || fx<gx)tp--;
            else break;
        }
        sta[++tp]=i;
    }
    for(int i=1;i<=tp;i++)ans[i]=a[sta[i]].op;
    sort(ans+1,ans+1+tp);
    printf("%d\n",tp);
    for(int i=1;i<tp;i++)printf("%d ",ans[i]);
    printf("%d\n",ans[tp]);
    return 0;
}
查看评论

bzoj3190: [JLOI2013]赛车

这道题A得太艰难了!WA了十多次。。。细节太多了。。。o(╯□╰)o(我不会告诉你是因为没开long long) 说好的赛车,还能有多个获奖,要是起跑线一样就全获奖?! 为了看懂题意,想了好久。原...
  • Miao_zc
  • Miao_zc
  • 2016-03-02 17:00:21
  • 785

BZOJ3190 [JLOI2013]赛车(单调栈+半平面交)

【题解】 数形结合思考: 画出v-t图像,若一条直线在一、四象限有不被覆盖的部分,它代表的车就可以领跑  将直线按他们的斜率从小到大排序后,要维护一个下凸壳,由于一条新加入的直线,能覆盖的左边的...
  • cjk_cjk
  • cjk_cjk
  • 2015-06-15 21:44:04
  • 699

bzoj3190【JLOI2013】赛车

计算几何之半平面交
  • AaronGZK
  • AaronGZK
  • 2016-04-07 23:41:38
  • 2600

[BZOJ3190][JLOI2013]赛车(计算几何+单调栈)

题目描述传送门题解一辆赛车行驶的路程就是v*t+k 看成一条条直线就是水平可见直线那道题了… 按照斜率排序之后用单调栈维护,每一次计算交点然后判断是否覆盖就行了 最后栈中且和下一条直线交点的横坐...
  • Clove_unique
  • Clove_unique
  • 2017-02-16 20:45:49
  • 398

Bzoj3190:[JLOI2013]赛车:半平面交

题目链接:[JLOI2013]赛车 对每个赛车列出他的x-t函数画在二维坐标系中,发现其实就是水平可见直线那道题了 我们将函数按照第一维v从小到大,第二维起始位置从大到小排序,然后对于有序的三发函...
  • qq_34025203
  • qq_34025203
  • 2016-04-27 07:53:38
  • 463

bzoj3190: [JLOI2013]赛车(单调栈)

题目传送门 。 解法: 跟水平可见直线很像啊。只不过这道题是从y轴开始的射线。 思路其实差不多。 单调栈维护下凸包。 先按照直线的k排序。 那么进来之后t其他直线。 当前直线为i。栈顶...
  • Hanks_o
  • Hanks_o
  • 2018-04-16 12:53:08
  • 9

bzoj3190 赛车 半平面交

对于一辆赛车,速度vi,位置ki,转化为一次函数yi=vix+ki。然后画出y1,y2,...y3的图像,然后可以发现,gi处于领先当且仅当yi=vix+ki在某一时刻是最大的(并列也算)。     ...
  • lych_cys
  • lych_cys
  • 2016-03-02 18:09:53
  • 547

bzoj3190 [JLOI2013]赛车(半平面交+单调栈)

题目链接 分析: 在任一时刻ttt,赛车iii的位置为:gi+vitgi+vitg_i+v_it 我们可以得到若干形如上式的方程,对于每一辆赛车,询问是否存在一ttt使得gi+vitgi+vit...
  • wu_tongtong
  • wu_tongtong
  • 2018-03-30 17:00:31
  • 12

【bzoj3190】 [JLOI2013] 赛车

【bzoj3190】 [JLOI2013] 赛车 给定N辆赛车的起始点及速度,统计哪些赛车曾经处于领跑位置。...
  • KHCUUM
  • KHCUUM
  • 2017-03-26 09:10:21
  • 168

BZOJ3190: [JLOI2013]赛车

什么东西。。 各种奇奇怪怪的错误然后乱改过得(不要拿我的程序对拍 具体思想是先按v排序#include #include #include #include #include using name...
  • liutian429073576
  • liutian429073576
  • 2016-03-02 19:15:18
  • 351
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 3万+
    积分: 3340
    排名: 1万+
    博客专栏
    最新评论