[bzoj5293][树上倍增]求和

6人阅读 评论(0) 收藏 举报
分类:

Description

master 对树上的求和非常感兴趣。他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k 次方和,而且每次的k
可能是不同的。此处节点深度的定义是这个节点到根的路径上的边数。他把这个问题交给 了pupil,但pupil
并不会这么复杂的操作,你能帮他解决吗?

Input

第一行包含一个正整数n ,表示树的节点数。 之后n-1 行每行两个空格隔开的正整数i,j ,表示树上的一条连接点i 和点j 的边。
之后一行一个正整数m ,表示询问的数量。 之后每行三个空格隔开的正整数i,j,k ,表示询问从点i 到点j 的路径上所有节点深度的k
次方和。 由于这个结果可能非常大,输出其对998244353 取模的结果。 树的节点从1 开始标号,其中1 号节点为树的根。

Output

对于每组数据输出一行一个正整数表示取模后的结果。 1≤n,m≤300000,1≤k≤50

Sample Input

5

1 2

1 3

2 4

2 5

2

1 4 5

5 4 45

Sample Output

33

503245989

HINT

说明

样例解释

以下用d(i) 表示第i 个节点的深度。

对于样例中的树,有d(1)=0,d(2)=1,d(3)=1,d(4)=2,d(5)=2。

因此第一个询问答案为(2^5 + 1^5 + 0^5) mod 998244353 = 33

第二个询问答案为(2^45 + 1^45 + 2^45) mod 998244353 = 503245989。

题解

你可以发现K<=50,于是我们可以直接预处理每个点到根路径上的50个和
然后LCA跳一跳
就没了。。
今天状态真的差LCA各种码错

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL mod=998244353;
struct node
{
    int x,y,next;
}a[610000];int len,last[310000];
void ins(int x,int y){len++;a[len].x=x;a[len].y=y;a[len].next=last[x];last[x]=len;}
int col[310000];
int bin[25],fa[310000][25];
LL dep[310000];
inline void pre_tree_node(int x)
{
    for(register int i=1;bin[i]<=dep[x];++i)fa[x][i]=fa[fa[x][i-1]][i-1];
    for(register int k=last[x];k;k=a[k].next)
    {
        int y=a[k].y;
        if(y!=fa[x][0])
        {
            dep[y]=dep[x]+1;
            fa[y][0]=x;
            pre_tree_node(y);
        }
    }
}
LL sx[310000][55];
inline LL pow_mod(int a,int b)
{
    register LL ret=1;
    while(b)
    {
        if(b&1)ret=(LL)ret*a%mod;
        a=(LL)a*a%mod;b>>=1;
    }
    return ret;
}
void work(int x)
{
    for(int i=1;i<=50;i++)sx[x][i]=sx[fa[x][0]][i]+pow_mod(dep[x]-1,i);
    for(int k=last[x];k;k=a[k].next)
    {
        int y=a[k].y;
        if(y!=fa[x][0])work(y);
    }
}
int lca(int x,int y)
{
    if(dep[x]<dep[y])swap(x,y);
    for(int i=20;i>=0;i--)if(bin[i]<=dep[x] && dep[fa[x][i]]>=dep[y])x=fa[x][i];
    if(x==y)return x;
    for(int i=20;i>=0;i--)if(bin[i]<=dep[x] && fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];
    return fa[x][0]; 
}
LL findsum(int x,int y,int op)
{
    int LA=lca(x,y);
    return (LL)(sx[x][op]+sx[y][op]-sx[LA][op]-sx[fa[LA][0]][op])%mod;
}
int n,m;
LL ans[310000];
int main()
{
    bin[0]=1;for(int i=1;i<=20;i++)bin[i]=bin[i-1]*2;
    scanf("%d",&n);
    for(int i=1;i<n;i++)
    {
        int x,y;scanf("%d%d",&x,&y);
        ins(x,y);ins(y,x);
    }
    fa[1][0]=0;dep[1]=1;
    pre_tree_node(1);
    work(1);
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
        int x,y,op;scanf("%d%d%d",&x,&y,&op);
        printf("%lld\n",findsum(x,y,op));
    }
    return 0;
}
查看评论

微信小程序项目实战(下拉刷新+加载更多)

1、微信小程序下拉刷新和上拉事件的需求和相关知识点讲解 2、微信小程下拉刷新的设计和开发 3、微信小程序加载更多的设计和开发
  • 2018年03月16日 01:48

bzoj5293: [Bjoi2018]求和(Lca)

题目传送门 。 解法: k&amp;lt;=50 暴力算每个点到根的每个次方和。 然后求出lca差分减一下 代码实现: #include&amp;lt;cstdio&amp;gt; ...
  • Hanks_o
  • Hanks_o
  • 2018-04-18 07:52:05
  • 4

树上倍增的写法和应用(详细讲解,新手秒懂)

最近做了一些树上的练习题,发现倍增真的是一种处理树上问题的神奇、方便的方法。 我以前一直打树链剖分打得多,但是学了倍增之后就再也不想打树链剖分了(当然有些题目不得不打)。 倍增比起树链剖分,代码短,容...
  • Saramanda
  • Saramanda
  • 2017-02-10 10:30:20
  • 1733

关于树上倍增求LCA

例:BZOJ1787 画图发现规律,三个点两两之间最近公共祖先点的集合最多只有两个元素,分类讨论即可。 #include using namespace std; #define fi first #...
  • Flere825
  • Flere825
  • 2016-09-22 22:21:30
  • 475

hdu 5293 Tree chain problem(树链剖分+树形dp)

题目链接:hdu 5293 Tree chain problem 维护dp[u], sum[u],dp[u]表示以u为根节点的子树的最优值。sum[u]表示以u节点的所有子节点的dp[v]之...
  • u011328934
  • u011328934
  • 2015-07-31 21:37:10
  • 741

BZOJ 4082 Wf2014 Surveillance 树上倍增

题目大意:给定一个nn个点的环,有kk个区间,要求选择最少的区间覆盖所有点首先我们考虑链上版本,显然我们有一个贪心的做法: 从1号节点开始,每次选择能向后走的最远的区间,直到走完所有节点为止 正确...
  • PoPoQQQ
  • PoPoQQQ
  • 2015-05-22 13:41:34
  • 1454

树上倍增求LCA(最近公共祖先)

前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?。。) 倍增求LCA: father【i】【j】表示节点i往上...
  • DaD3zZ
  • DaD3zZ
  • 2015-10-24 17:08:41
  • 3346

【树上倍增算法模板】

例:noip2013 货车运输
  • willinglive
  • willinglive
  • 2014-10-12 21:32:46
  • 883

Hdu-5875 Function(树上倍增st算法)

Problem Description The shorter, the simpler. With this problem, you should be convinced of this tr...
  • u014258433
  • u014258433
  • 2016-09-10 20:14:21
  • 362

树上倍增解析(转载)

最近做了一些树上的练习题,发现倍增真的是一种处理树上问题的神奇、方便的方法。 我以前一直打树链剖分打得多,但是学了倍增之后就再也不想打树链剖分了(当然有些题目不得不打)。 倍增比起树链剖分,代码短...
  • qq_39553725
  • qq_39553725
  • 2017-09-04 21:27:22
  • 89
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 3万+
    积分: 3536
    排名: 1万+
    博客专栏
    最新评论