[bzoj5296][BSGS]破解D-H协议

63 篇文章 0 订阅

Description

Diffie-Hellman密钥交换协议是一种简单有效的密钥交换方法。它可以让通讯双方在没有事先约定密钥(密码)的情况下
通过不安全的信道(可能被窃听)建立一个安全的密钥K,用于加密之后的通讯内容。
假定通讯双方名为Alice和Bob,协议的工作过程描述如下(其中mod表示取模运算):
1.协议规定一个固定的质数P,以及模P的一个原根g。P和g的数值都是公开的,无需保密。 2.Alice生成一个随机数a,并计算A=g^a
mod P,将A通过不安全信道发送给Bob。 3.Bob生成一个随机数b,并计算B=g^b mod P,将B通过不安全信道发送给Alice。
4.Bob根据收到的A计算出K=A^b mod P,而Alice根据收到的B计算出K=B^a mod P。
5.双方得到了相同的K,即g^(a*b) mod P。K可以用于之后通讯的加密密钥。
可见,这个过程中可能被窃听的只有A、B,而a、b、K是保密的。并且根据A、B、P、g这4个数,不能轻易计算出
K,因此K可以作为一个安全的密钥。
当然安全是相对的,该协议的安全性取决于数值的大小,通常a、b、P都选取数百位以上的大整数以避免被破解。然而如
果Alice和Bob编程时偷懒,为了避免实现大数运算,选择的数值都小于2^31,那么破解他们的密钥就比较容易了。

Input

输入文件第一行包含两个空格分开的正整数g和P。 第二行为一个正整数n,表示Alice和Bob共进行了n次连接(即运行了n次协议)。
接下来n行,每行包含两个空格分开的正整数A和B,表示某次连接中,被窃听的A、B数值。 2≤A,B < P<2^31,2≤g<20, n<=20

Output

输出包含n行,每行1个正整数K,为每次连接你破解得到的密钥。

Sample Input

3 31

3

27 16

21 3

9 26

Sample Output

4

21

25

题解

据说今年CQOI特别多模板
于是这就是一个BSGS模板。。
然后。。map效率好慢啊
然后就改了一下
然后就没什么了。。。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<map>
using namespace std;
typedef long long LL;
struct LSnode
{
    int y,p;
}w[511000],q[511000];int tot,tlen;
//map<LL,int> mp;
int g;LL mod;
inline int pow_mod(int a,LL b)
{
    register int ret=1;
    while(b){if(b&1)ret=(LL)ret*a%mod;a=(LL)a*a%mod;b>>=1;}
    return ret;
}
bool cmp(LSnode n1,LSnode n2)
{
    if(n1.y!=n2.y)return n1.y<n2.y;
    return n1.p<n2.p;
}
inline int fd(int p)
{
    int l=1,r=tlen;
    while(l<=r)
    {
        int mid=(l+r)/2;
        if(q[mid].y<p)l=mid+1;
        else if(q[mid].y>p)r=mid-1;
        else return q[mid].p;
    }
    return -1;
}
inline int BSGS(int y,int A)
{
    if(y==0 && A==0)return 1;
    //mp.clear();
    register int tmp=pow_mod(y,mod-2),cnt=1;
    int m=ceil(sqrt(mod));
    tot=0;
    w[++tot].y=A;w[tot].p=m+1;
    //mp[A]=m+1;
    for(register int i=1;i<m;i++)
    {
        cnt=(LL)cnt*tmp%mod;
        LL t=(LL)cnt*A%mod;
        w[++tot].y=t;w[tot].p=i;
        //if(mp[t]==0)mp[t]=i;
    }
    sort(w+1,w+1+tot,cmp);
    tlen=1;q[1]=w[1];
    for(int i=2;i<=tot;i++)if(w[i].y!=w[i-1].y)q[++tlen]=w[i];
    tmp=pow_mod(y,m),cnt=1;
    for(register int i=0;i<m;i++)
    {
        int pp=fd(cnt);
        if(pp!=-1)
        {
            if(pp==m+1)return i*m;
            return pp+i*m;
        }
        cnt=(LL)cnt*tmp%mod;
    }
}
int main()
{
    int T;
    scanf("%d%lld",&g,&mod);
    scanf("%d",&T);
    while(T--)
    {
        int u,v;scanf("%d%d",&u,&v);
        int sx,sy;
        sy=BSGS(g,v);
        sx=BSGS(g,u);
        printf("%d\n",pow_mod(g,(LL)sx*sy));    
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值