[bzoj3331][强联通][树上差分]压力

6 篇文章 0 订阅
2 篇文章 0 订阅

Description

如今,路由器和交换机构建起了互联网的骨架。处在互联网的骨干位置的
核心路由器典型的要处理100Gbit/s的网络流量。他们每天都生活在巨大的压力 之下。
小强建立了一个模型。这世界上有N个网络设备,他们之间有M个双向的 链接。这个世界是连通的。在一段时间里,有Q个数据包要从一个网络设备发
送到另一个网络设备。 一个网络设备承受的压力有多大呢?很显然,这取决于Q个数据包各自走
的路径。不过,某些数据包无论走什么路径都不可避免的要通过某些网络设 备。 你要计算:对每个网络设备,必须通过(包括起点、终点)他的数据包有
多少个?

Input

第一行包含3个由空格隔开的正整数N,M,Q。 接下来M行,每行两个整数u,v,表示第u个网络设备(从1开始编号)和
第v个网络设备之间有一个链接。u不会等于v。两个网络设备之间可能有多个 链接。
接下来Q行,每行两个整数p,q,表示第p个网络设备向第q个网络设备发 送了一个数据包。p不会等于q。

Output

输出N行,每行1个整数,表示必须通过某个网络设备的数据包的数量。

Sample Input

4 4 2

1 2

1 3

2 3

1 4

4 2

4 3

Sample Output

2

1

1

2

HINT

【样例解释】

设备1、2、3之间两两有链接,4只和1有链接。4想向2和3各发送一个数据

包。显然,这两个数据包必须要经过它的起点、终点和1。

【数据规模和约定】

对于40%的数据,N,M,Q≤2000

对于60%的数据,N,M,Q≤40000

对于100%的数据,N≤100000,M,Q≤200000

题解

做完lyd的书这题简直就是傻逼题…
点双+树上倍增+树上差分没了..
模板打错没谁了

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
inline int read()
{
    int f=1,x=0;char ch=getchar();
    while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
inline void write(int x)
{
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+'0');
}
vector<int> dcc[100005];
struct node{int x,y,next;}a[400005];int len,last[200005];
void ins(int x,int y){len++;a[len].x=x;a[len].y=y;a[len].next=last[x];last[x]=len;}
int dfn[200005],low[200005],sta[200005],id,cnt,tp,root;
bool cut[200005];
void tarjan(int x)
{
    low[x]=dfn[x]=++id;sta[++tp]=x;
    int flag=0;
    for(int k=last[x];k;k=a[k].next)
    {
        int y=a[k].y;
        if(dfn[y]==-1)
        {
            tarjan(y);low[x]=min(low[x],low[y]);
            if(low[y]>=dfn[x])
            {
                flag++;
                if(root!=x || flag>1)cut[x]=true;
                cnt++;int i;
                do
                {
                    i=sta[tp--];
                    dcc[cnt].push_back(i);
                }while(i!=y);
                dcc[cnt].push_back(x);
            }
        }
        else low[x]=min(low[x],dfn[y]);
    }
}
int fa[200005][25],dep[200005],bin[25];
void pre_tree_node(int x)
{
    for(int i=1;bin[i]<=dep[x];i++)fa[x][i]=fa[fa[x][i-1]][i-1];
    for(int k=last[x];k;k=a[k].next)
    {
        int y=a[k].y;
        if(y!=fa[x][0])
        {
            fa[y][0]=x;dep[y]=dep[x]+1;
            pre_tree_node(y);
        }
    }
}
inline int lca(int x,int y)
{
    if(dep[x]<dep[y])swap(x,y);
    for(int i=17;i>=0;i--)if(bin[i]<=dep[x]&&dep[fa[x][i]]>=dep[y])x=fa[x][i];
    if(x==y)return x;
    for(int i=17;i>=0;i--)if(bin[i]<=dep[x]&&fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];
    return fa[x][0];
}
int sum[200005];
void meg(int x,int fa)
{
    for(int k=last[x];k;k=a[k].next)
        if(a[k].y!=fa)
        {
            int y=a[k].y;
            meg(y,x);sum[x]+=sum[y];
        }
}
int n,m,T,belong[200005],ans[200005];
int main()
{
//  freopen("a.in","r",stdin);
//  freopen("a.out","w",stdout);
    bin[0]=1;for(int i=1;i<=17;i++)bin[i]=bin[i-1]<<1;
    n=read();m=read();T=read();
    for(int i=1;i<=m;i++)
    {
        int x=read(),y=read();
        ins(x,y);ins(y,x);
    }
    memset(dfn,-1,sizeof(dfn));
    for(int i=1;i<=n;i++)if(dfn[i]==-1)root=i,tarjan(i);
    int gg=cnt;
    for(int i=1;i<=n;i++)if(cut[i])belong[i]=++gg;
    len=0;memset(last,0,sizeof(last));
    for(int i=1;i<=cnt;i++)
        for(int j=0;j<dcc[i].size();j++)
        {
            if(cut[dcc[i][j]])ins(belong[dcc[i][j]],i),ins(i,belong[dcc[i][j]]);
            else belong[dcc[i][j]]=i;
        }
    pre_tree_node(1);
//  for(int i=1;i<=len;i++)printf("%d %d\n",a[i].x,a[i].y);
//  for(int i=1;i<=n;i++)printf("%d ",belong[i]);
    while(T--)
    {
        int x=read(),y=read();
        if(belong[x]==belong[y])
        {
            if(x==y)ans[x]++;
            else ans[x]++,ans[y]++;
            continue;
        }
        int LA=lca(belong[x],belong[y]);
        sum[belong[x]]++;sum[belong[y]]++;
        ans[x]++;ans[y]++;
        if(cut[x])ans[x]--;if(cut[y])ans[y]--;
        sum[LA]--;sum[fa[LA][0]]--;
    }
    meg(1,0);
    for(int i=1;i<=n;i++)
    {
        if(cut[i])write(sum[belong[i]]+ans[i]);
        else write(ans[i]);
        puts("");
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值