Description
给出一个n,求1-n这n个数,同n的最小公倍数的和。
例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。
由于结果很大,输出Mod 1000000007的结果。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)
第2 - T + 1行:T个数A[i](A[i] <= 10^9)
Output
共T行,输出对应的最小公倍数之和
Sample Input
3
5
6
9
Sample Output
55
66
279
题解
开始只会 T ∗ l o g n ∗ n T*logn*\sqrt n T∗logn∗n的
然后…
懒人搬运大爷题解
主要是转成质因数的贡献这方面很妙
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<ctime>
#include<map>
#include<bitset>
#define LL long long
#define mp(x,y) make_pair(x,y)
#define mod 1000000007
using namespace std;
inline int read()
{
int f=1,x=0;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void write(int x)
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
}
inline void pr1(int x){write(x);printf(" ");}
inline void pr2(int x){write(x);puts("");}
LL pow_mod(LL a,LL b)
{
LL ret=1;
while(b)
{
if(b&1)ret=ret*a%mod;
a=a*a%mod;b>>=1;
}
return ret;
}
bool v[100005];
int pr[100005],plen;
void getpr(int MAXN)
{
memset(v,true,sizeof(v));
for(int i=2;i<=MAXN;i++)
{
if(v[i])pr[++plen]=i;
for(int j=1;j<=plen&&i*pr[j]<=MAXN;j++)
{
v[i*pr[j]]=false;
if(!(i%pr[j]))break;
}
}
}
LL calc(int p,int s)
{
LL ret=0;
ret=(pow_mod(p,2*s+1)-p+mod)%mod;
ret=ret*pow_mod(p+1,mod-2)%mod;
return (ret+1)%mod;
}
int main()
{
getpr(100000);
LL inv2=pow_mod(2,mod-2);
int T=read();while(T--)
{
int n=read();int temp=n;
LL ans=1;
for(int i=1;i<=plen&&pr[i]*pr[i]<=n;i++)
if(!(n%pr[i]))
{
int sum=0;
while(!(n%pr[i]))n/=pr[i],sum++;
ans=ans*calc(pr[i],sum)%mod;
}
if(n!=1)ans=ans*calc(n,1)%mod;
ans=(ans-1+mod)%mod;
ans=ans*inv2%mod*temp%mod;
ans=(ans+temp)%mod;
pr2(ans);
}
return 0;
}