题目大意:有t( 1<=t<=104 )个数arr[1],arr[2]….arr[t],设每个数是n( 2<=n<=109 ),任务是将这个n的质因子分解出来,包括重复的质因子,时限是1000MS。。比如n=18,而18=2*3*3,所以输出的结果就是2 3 3。
n的范围是 [2,109] ,很容易想到n的质因子的范围是 [2,sqrt(n)] ,所以可以预处理出 [2,sqrt(109)] 的所有素数(注:sqrt()就是求解一个数的平方根),这个范围内的素数大概只有3千多个,拿这个n跟所有的素数prim[i]从小到大相除,能够除尽说明这个prim[i]就是其质因子。
当n去除prim[i]时,若能够除尽,prim[i]就是其质因子,然后n /= prim[i],当n大于1时,继续除prim[i],直到除不尽prim[i](或者n小于等于1),若n等于1(此时表明n的所有质因子已经分解出),若n还大于1则找下一能被n正除的素数。当n去尝试完所有的素数后,n还是大于1,此时说明剩下的n是个素数,这个素数是原n的一个质因子。
#include <iostream>
using namespace std;
const int MAXN = 40000;//筛4w的素数是远远够的
bool used[MAXN];
int prim[MAXN];//存放素数
int SIZE = 0;//素数的个数
void is_prim()//埃氏素筛法
{
for(int i = 2; i * i < MAXN; ++i)
{
if(!used[i])
for(int j = 2 * i; j < MAXN; j += i) used[j] = true;
}
for(int i = 2; i < MAXN; ++i)
if(!used[i]) prim[SIZE++] = i;
}
int main()
{
is_prim();
int t;
cin >> t;
while(t--)
{
int n;
cin >> n;
for(int i = 0; i < SIZE && n > 1; ++i)
{
while(n > 1 && n % prim[i] == 0)//当n大于1并且n能够除尽prim[i]
{
n /= prim[i];
cout << prim[i] << " ";
}
}
if(n > 1) cout << n;//此时说明n是个素数,并且是大于4w的素数
cout << endl;
}
return 0;
}
/*
input:
5
35
25
3
77766767
18
output:
5 7
5 5
3
13 83 72073
2 3 3
*/
时间复杂度的分析,求解出 [2,sqrt(109)] 的所有素数时间复杂度是个接近线性的时间复杂度 O(sqrt(109)) ,求每个数的质因子最坏的情况下会尝试所有的素数,素数有3k多个,也就是 103 ,共 104 组数据,所以最坏的时间复杂度是$O(10^7),1000MS内还是能够跑出正确的结果。