自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(393)
  • 收藏
  • 关注

原创 KF-GINS 和 OB-GINS 的 Earth类 和 Rotation 类

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2025-01-27 10:00:00 776

原创 KF-GINS源码阅读

KF-GINS 是武大 i2Nav 实验室开源的一套松组合导航程序;可以读取 IMU 数据文件、GNSS 结果文件,进行松组合解算,计算位置、速度、姿态、陀螺仪零偏、加速度计零偏、陀螺仪比例、加速度计比力,共 21 维状态向量。代码量小,有详细的文档、注释和讲解,代码结构很好理解,有一些可以学习的工程技巧。用 cloc 对 src 目录进行统计,结果如下。可以看出代码量很小,只有1412行,注释很详细,足有804行。无需自己配置,作者把它们放到 ThirdParty 文件夹,并在 CMakeLists 文件

2025-01-27 09:00:00 1084

原创 TGINS源码阅读

直接运行终端会输出很多很多中间数据,有些调试输出没删干净,先全局搜索 matprint 把解算代码中的都注释掉。写输出代码之前先试试在前面打个断点,确认程序能运行到那。代码风格比较 C 语言,用了一些 C++

2025-01-26 09:30:00 349

原创 GNSS-SDR源码阅读(一)软件介绍、编译调试、配置文件

GNSS-SDR(GlobalNavigationSatelliteSystems、SoftwareDefinedReceiver)是一个用 C++ 实现的 GNSS 软件接收机开源项目。有了 GNSS-SDR,用户可以通过创建一个图来构建 GNSS 软件接收器,图中的节点是信号处理块,线条代表它们之间的数据流。该软件为不同的合适射频前端提供接口,并实现从接收器一直到 PVT 解算的所有功能。

2025-01-26 08:30:00 546

原创 ORB-SLAM3源码阅读(三)LocalMapping 线程

先加入关键帧和地图点到当前激活地图,删除其余帧,并通过对当前帧的附近关键帧操作,利用视觉 BA 或视觉-惯性 BA 优化地图。对于关键帧中每个未匹配的 ORB 特征点,在另一个关键帧中搜索与其他不匹配点进行匹配,丢弃不满足对极约束的匹配。:采用 ORB-SLAM1 (单目)的初始化流程,按照关键帧速率 4 Hz 运行 2s 揷入关键帧 ,然后按比例缩放的地图,包括10个关键帧以及上百个地图点,然后通过 Visual-Only BA 进行优化。随着关键帧数量的增加,BA 的复杂度也会随之提高。

2025-01-25 13:00:00 657

原创 ORB-SLAM3源码阅读(五)ORB-SLAM 延伸

有了对数数据,就可以根据 RGB-D 数据,更新整个八叉树地图。假设在 RGB-D 图像中观测到某个像素带有深度 d,就说明在深度值对应的空间点上观测到了一个占据数据,并且从相机光心出发,到这个点的线段上都没有物体(否则会被遮挡)。学过地信的都知道这种地图编码方式比较高效,节省空间,当某个方块的子节点都相同,就无需展开。ORB-SLAM3 生成的是稀释点云地图,只能定位,无法直接用于导航,需要对稀疏点云稠密化构建稠密地图。对于占据和空白来说,选择用概论的形式表达,这样就可以动态建模地图中的障碍物信息。

2025-01-25 10:30:00 929

原创 ORB-SLAM3源码阅读(二)Tracking 线程

由于此时搜索出的角点过多,因此本文对检测出来的角点群利用非极大值抑制方法进行 FAST 角点的筛选,并在保留的 FAST 角点上计算方向,以此来实现特征点的旋转不变性,最后计算当前图像帧中角点的 BRIEF( binary robustindependent elementary features)描述子用于与上一帧中的角点的 BRIEF 描述子进行特征匹配。实际情况下,从不同的距离,不同的方向、角度,不同的光照条件下观察一个物体时,物体的大小,形状 ,明暗都会有所不同。

2025-01-24 10:15:00 1148

原创 ORB-SLAM3源码阅读(四)Loop&Merging 线程

Welding window 是由匹配的关键帧组合而成、重复的 3D 点被融合、更新共视图以及本质图的连接关系。当检测到闭环候选帧的时候,就需要对当前关键帧和对应的闭环候选帧之间计算其变换关系,即Sim3 求解。所有的被闭环处的关键帧观察到的地 图点会通过映射在一个小范围里,然后去搜索它的近邻匹配。,也 就能对当前关键帧进行位姿校正 (当然也要对关键帧对应的MapPoints 以及其共视的关键帧进行校正)。以及其共视帧,以及被这些关键帧观测的地图点。,并 更新关键帧位姿,以及在图中的边。

2025-01-24 08:15:00 881

原创 01-ORB-SLAM3源码阅读(一)程序简介、编译调试、基础知识点

ORB 指 Oriented FAST and rotated BRIEF,是一种结合 FAST 和 BRIEF,并引入旋转不变性的一种特征点和描述子;SLAM 指 Simultaneous Localization and Mapping,指的是同时进行实时定位和地图构建。ORB-SLAM3 是迄今为止,最完整的视觉惯性 SLAM 系统系统,它是第一个集成了单目相机、双目相机、RGB-D相机,以及单目相机结合 IMU、双目相机结合 IMU 的 SLAM 系统。并且在 ORB-SLAM2 的基础上,改进了相

2025-01-23 13:00:00 1185

原创 VINS-Mono源码阅读(五)VIO 初始化

需要初始化的变量如下,分别是滑窗,状态,和外参:Xxk​xcb​​x0​x1​xn​xcb​λ0​λ1​λm​pbk​w​vbk​w​qbk​w​ba​bg​k∈0npcb​qcb​。

2025-01-23 08:30:00 1370

原创 VINS-Mono源码阅读(四)IMU预积分

加速度是由与载体固连的加速度计测量得到的(会跟随载体转动),每一时刻的加速度都是在当前的载体系下得到的,进行速度和位置的积分,前提是把这些加速度都统一到同一个坐标系下。如果我们假设参考坐标系下载体的初始速度和初始位置已知,利用载体运动过程中参考系下的加速度信息,就可以不断地进行积分运算,更新实时的速度和位置。及速度等状态,根据这种思路,如果知道上一帧图像采样时刻载体的位姿和速度,则可以根据两帧之间的 IMU 测量(角速度和比力)递推得到当前帧的位姿和速度。,利用 IMU 测量得到的比力和角速度信息进行。

2025-01-22 18:30:00 921

原创 VINS-Mono源码阅读(二)Feature_tracker 节点:视觉前端

setMask() 函数,先对跟踪到的特征点 forw_pts 按照跟踪次数降序排列(认为特征点被跟踪到的次数越多越好),然后遍历这个降序排列,对于遍历的每一个特征点,在 mask 中将该点周围半径为 MIN_DIST 的区域设置为 0,在后续的遍历过程中,不再选择该区域内的点。因此,本质矩阵的维度是3 x 3。转化为用优化问题,为防止局部最小,用图像金字塔提高光流追踪的稳定性,图像缩放了更容易追踪,最终还要把找到的特征点返回到实际图像上的位置,上一次金字塔最终的结果作为下一次金字塔最终的初值。

2025-01-22 09:00:00 1650

原创 VINS-Mono源码阅读(一)程序简介、编译调试、配置文件

与双目相机和 RGB-D 相机相比,单目相机具有结构简单、成本低和处理速度快的优点。然而,单目 VSLAM 存在尺度不确定性、无法对齐位姿和重力方向的自身缺点和快速运动导致的运动模糊的环境下容易跟踪丢失等不足。为弥补此问题,可将单目相机和 IMU 相结合的传感器融合,这种融合方案被称为单目视觉惯性里程计(Visual Inertial Odometry,VIO)或单目视觉惯性 SLAM(Visual-inertial SLAM,VINS)。

2025-01-21 14:13:17 1534

原创 SoftGNSS软件接收机源码阅读(一)程序简介、运行调试、执行流程

卫星信号由导航电文、测距码、载波三个层次组成,GNSS 原始的信号频率高达 1.5 Ghz,且信号过于微弱,

2025-01-21 14:12:45 1252

原创 基于因子图优化的GNSS定位算法原理

GNSS在诸如城市、施工现场、农田、密林等城市峡谷等遮挡环境下:且由于在此类环境下,这些测量值的时间相关性更加明显,使用传统的滤波手段进行处理仅考虑前一状态的值忽略了其他历史状态值,使得定位结果更加不精确。为充分挖掘历史信息的作用,引入因子图优化(FGO)对GNSS测量值进行融合解算,该方法将伪距、载波相位、多普勒观测量添加为因子节点,引入多普勒因子连接历元间变量节点,实现解算模型的因子图优化。相较于滤波,因子图的优势体现在:因子图技术的潜力,也在一个近期的Google在美国导航协会的ION GNSS+ 2

2025-01-18 15:45:00 325

原创 GraphGNSSLib README翻译

此仓库是开源软件包的实现,GraphGNSSLib 利用因子图优化(FGO)来执行GNSS定位和实时动态(RTK)定位.在这个软件包中,历史和当前时期的测量结果被结构化为因子图,然后通过非线性优化进行求解。在容器中位于 ~/graph1/shared_dir ,你可以下载代码到 ~/shared_dir ,并且在容器中编译(推荐给那些有兴趣更改源代码的人)。如果你不熟悉ROS,我们强烈推荐推荐你用我们的Docker容器来使用GraphGNSSLib,具体见下文。已经安装在你的电脑上。

2025-01-18 07:30:00 693

原创 03-GICI-LIB源码阅读(三)因子图优化模型

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2025-01-17 08:30:00 174

原创 02-GICI-LIB源码阅读(二)主要的类和程序执行流程

和 是 cpp 中用于函数包装和绑定的工具,在 GICI中用于绑定数据回调函数。 是一个可调用对象,可以存储任何可调用对象,例如函数指针、成员函数指针或 lambda 表达式。您可以使用 来创建一个函数对象,以便稍后调用。例如:在上面的例子中,我们使用 来存储 函数,并在 函数中调用它。 用于将函数和其参数绑定到特定的对象。它返回一个可调用对象,可以将其传递给 或直接调用。例如:在上面的例子中,我们使用 将 函数绑定到 对象上,并将参数 传递给它。然后,我们将绑定后的函数存储到 中

2025-01-16 16:45:00 926

原创 01-GICI-LIB源码阅读(一)程序简介、编译调试、配置文件

作者的介绍:为了阐明 GNSS 的算法模型,加快在多源融合应用中针对 GNSS 的开发效率,我们开源了 GICI-LIB,并辅以详尽的文档和全面的数据集。GICI-LIB 以可扩展的设计理念,实现了GIC传感器之间多种形式的松紧组合。评估结果表明,GIC 系统能够在多种复杂环境下,提供分米到米级的高精度导航。GICI-LIB 全称GNSS/INS/CameraIntegrated Navigation Library,是上海交大最新开源的一套基于图优化的 GNSS+INS+Camera 集成导航定位库。

2025-01-16 11:30:00 302

原创 【论文翻译】GICI-LIB:A GNSS-INS-Camera Integrated Navigation Library

准确的导航定位信息对机器人和车辆至关重要。近年来,全球导航卫星系统(GNSS)、惯性导航全球导航卫星系统(GNSS)、惯性导航系统(INS)和相机(Camera)量测数据的融合(Integrated),由于在不同环境下的鲁棒性和高精度,受到了广泛关注。但在这些系统中,很难充分发挥 GNSS 的作用,因为 GNSS 可选择的误差模型、卫星星座、信号频率和增强服务类型太多了;不同的 GNSS 解算方式会带来不同的精度、鲁棒性、依赖性。

2025-01-15 19:59:42 658

原创 goGPS WiKi网站翻译

注意:目前只支持静止测站的解算,还不能动态解算。那是2007年,在米兰理工大学–科莫校区,最初有一套用来教学生GPS数据处理和 Kalman 滤波的程序。当时Mirko Reguzzoni 和 Eugenio Realini 觉得,基于MATLAB语言的新的GPS处理软件可能有发展空间。在一些学生(创始者)的帮助下,他们开始写一套利用 Kalman 滤波的完整软件。goGPS 的第一个版本可以追溯到2009年,当时代码在 GPL 下发布并上传到 SourceForge 平台。之后该软件开始在大学里被使用,并

2025-01-15 19:55:37 704

原创 PPPLib源码阅读

PPPLib 基于 RTKLib 以 C++ 为主要开发语言编写,支持后处理 PPP、PPK、INS/GNSS 松组合和紧组合 ,作者是我的老师陈超。

2025-01-15 19:54:50 307

原创 微分方程-姿态阵微分方程及求解-四元数微分方程及求解-等效旋转矢量微分方程及求解

C˙bi=Cbi(ωibb×)\dot{\boldsymbol{C}}_{b}^{i}=\boldsymbol{C}_{b}^{i}\left({\boldsymbol{\omega}_{i b}^{b}}\times\right)C˙bi​=Cbi​(ωibb​×)描述的是姿态的变化和角速率 ωibb\boldsymbol{\omega}_{i b}^{b}ωibb​ 的关系,角速率正好可以由陀螺仪测量得到,三个轴装三个陀螺,就有了微分方程,再结合初值,可得到姿态变化阵。简记C˙bi=Cbi(ωib

2025-01-14 10:50:21 921

原创 PSINS工具箱学习(五)SINS-GNSS组合导航

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2025-01-14 10:47:55 450

原创 PSINS工具箱学习(四)捷联惯导更新算法

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2025-01-14 10:47:20 286

原创 03-PSINS工具箱学习(三)让AI解释PSINS中的各种卡尔曼滤波函数

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-LearningPSINS 中的 Kalman 滤波代码都在百行以内,没调用什么函数,而且通用性很强,拿去让 AI 解释,效果挺好。

2024-12-22 13:00:00 1691

原创 02-PSINS工具箱学习(二)姿态的表示:姿态阵、四元数、欧拉角、等效旋转矢量的概念和转换

由于捷联惯导系统采用通过姿态矩阵计算建立的数学平台,在捷联惯导系统的姿态、速度和位置的更新算法中,姿态算法对整个系统的精度影响最大,它是算法研究和设计的核心。姿态求解目标:知道初始姿态参数,实时根据陀螺仪的测量,输出姿态参数:根据原点的位置和轴线得到指向,可以将惯导坐标系分为以下几类:也称 ECI,原点在地球质心,坐标轴不随地球自转(Z轴指向北极,X轴指向春分点)。惯性传感器输出以此为基准。尽管受到太阳引力场的作用,存在 6∗10−7g6*10^{-7}g6∗10−7g 的公转向心力;但在地球表面以地球做惯

2024-12-22 10:30:00 199

原创 01-PSINS工具箱学习(一)下载安装初始化、SINS-GPS组合导航仿真、习惯约定与常用变量符号、数据导入转换、绘图显示

PSINS(Precise Strapdown Inertial Navigation System 高精度捷联惯导系统算法)工具箱由西北工业大学自动化学院惯性技术教研室严恭敏老师开发和维护。工具箱分为Matlab和C++两部分。主要应用于捷联惯导系统的数据处理和算法验证开发,它包括惯性传感器数据分析惯组标定初始对准惯导AVP(姿态-速度-位置)更新解算、组合导航Kalman滤波等功能。C++部分采用VC6编写,可以用于嵌入式开发。如果你之前还没接触过PSINS工具箱,强烈建议先去看严老师的视频讲解。

2024-12-21 10:15:00 1887

原创 GAMP源码阅读:卫星位置钟差计算

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2024-12-21 08:00:00 1155

原创 GAMP源码阅读:RINEX文件读取

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2024-12-20 14:00:00 851

原创 GAMP源码阅读:PPP中的模型改正:对流层延迟、电离层延迟、天线相位、潮汐、地球自转效应、引力延迟

对流层一般指距离地面 50km 内的大气层,是大气层质量的主要部分。当导航信号穿过对流层时,由于传播介质密度的增加,信号传播路径和传播速度会发生改变,由此引起的 GNSS 观测值误差称为对流层延迟。对流层延迟一般可分为干延迟和湿延迟,对于载波相位和伪距完全相同,一般在米级大小,可通过模型改正和参数估计的方法来削弱其影响。修正模型如下:T=MdryTdry+MwetTwetT=M_{d r y} T_{d r y}+M_{w e t} T_{w e t}T=Mdry​Tdry​+Mwet​Twet​式

2024-12-20 09:00:00 1209

原创 GAMP源码阅读(下)精密单点定位 PPP

以非差非组合双频 PPP 模型为例,假如某一时刻观测到 m\mathrm{m}m 颗卫星,则可建立 4 m4 \mathrm{~m}4 m 个观测方程,其误差方程为:V4m×1=H4m×n⋅X−ln×1\underset{4 m \times 1}{\mathbf{V}}=\underset{4 m \times n}{\mathbf{H}} \cdot \mathbf{X}-\underset{n \times 1}{\mathbf{l}}4m×1V​=4m×nH​⋅X−n×1l​式中,V\mat

2024-12-19 11:45:00 974

原创 GAMP源码阅读(中)伪距单点定位 SPP

默认使用广播星历计算卫星位置、钟差,使用克罗布歇模型通过广播星历中的参数计算电离层延迟,使用 Saastamoinen 模型计算对流层延迟。调用 计算卫星位置、卫星钟差:调用 计算接收机位置:加权最小二乘,其中会调用 valsol 进行卡方检验和GDOP检验。存入方位角和俯仰角 ,赋值解算状态结构体 ssat。2、estpos()这个函数是 GAMP 新加的,原本 的内容都移到 中了;这个函数看着着实费劲,有段看半天没看明白,后来把代码复制给 AI,才知道那啥计算阶乘、组合数。先初始化待估参

2024-12-19 10:45:00 625

原创 RTKLIB源码阅读(十)精密单点定位 PPP

【代码】RTKLIB源码阅读(十)精密单点定位 PPP。

2024-12-18 10:30:00 2298

原创 GAMP源码阅读(上)主要类型、后处理流程

GAMP 全称 (GNSSAMPrecise positioning),在 RTKLIB 的基础上,将一些多余的函数、代码简洁化,精简出后处理 PPP 部分,并对算法进行改进增强。简化后代码比 RTKLIB 原版还要简单,对初学者非常友好,在我接触过的导航定位开源程序中算是最简单的。使用也很方便,软件包里提供了 VS 工程,和组织好的配置文件、数据文件;设置好 pthreads 库,简单改改文件路径就能算出结果。大部分沿用 RTKLIB,做了少量拓展大部分沿用 RTKLIB,做了少量拓展。

2024-12-18 08:15:00 806

原创 RTKLIB源码阅读(九)相对定位 RTK、PPK、RTD

存RTK选项,定位结果2、sol_t:结果结构体3、SOLQ_XXX:解的类型状态4、ambc_t:模糊度固定控制结构体5、ssat_t:卫星状态控制结构体6、prcopt_t:算法处理选项结构体7、obs_t:观测值信息结构体存一系列的字段是数组,字段表示存着的数目,字段表示目前内存空间最大能存的数目函数执行向中添加观测值数据的操作,先检验值,不够就函数中读取完数据后,会调用根据time, rcv, sat ,对的元素进行排序、去重,得到历元数,调用,进行星历数据的排

2024-12-17 12:45:00 207

原创 RTKLIB源码阅读(八)伪距单点定位 SPP

卫星GNSS电磁波信号在传播过程中需要穿过地球大气层,会产生一些大气延迟误差,包括电离层延迟误差和对流层延迟误差。电离层的范围从离地面约50公里开始一直伸展到约1000公里高度的地球高层大气空域。电离层的主要特性由电子密度、电子温度、碰撞频率、离子密度、离子温度和离子成分等空间分布的基本参数来表示。电离层的研究对象主要是电子密度随高度的分布。电子密度(或称电子浓度)是指单位体积的自由电子数,随高度的变化与各高度上大气成分、大气密度以及太阳辐射通量等因素有关。

2024-12-17 10:30:00 226

原创 RTKLIB源码阅读(六)观测值误差改正:电离层、对流层、天线相位中心、相位缠绕、DCB

文件头结束于。多组总电子含量,每组以,结束于。多组电子含量均方根误差,与总电子含量对应,开始于,结束于DCB数据块开始于,结束于,也称辅助数据块天线相位中心,即天线]接收信号的电气中心,其空间位置在出厂时往往不在天线的几何中心上。天线所辐射出的电磁波在离开天线一定的距离后,其等相位面会近似为一个球面,该球面的球心即为该天线的等效相位中心,即天线相位中心(Antenna Phase Center )GNSS观测量是相对于接收机天线的平均相位中心。

2024-12-16 16:35:39 176

原创 RTKLIB源码阅读(五)导航电文、星历数据读取、卫星位置钟差计算

GPS卫星信号由载波、伪码、导航电文(数据码)三个层次组成。数据码首先与伪码异或相加实现扩频,然后二者的组合码通过双向移位键控(BPSK)对载波进行调制。用户接收机首先对载波信号进行BPSK(调相调制)解调,使卫星信号的中心频率从L1下变频为0,之后再将载波解调后的卫星信号与接收机内部复制的C/A码Gi做自相关运算,剥离卫星信号中的C/A码,使信号频宽变回到只含数据码的基带,以得到 50bps 数据码,再按导航电文的格式最终将数据码编译成导航电文。每一个子帧的第一个字均为遥测字,在导航电文中每6s出现一次,

2024-12-16 16:35:02 1566

原创 RTKLIB源码阅读(四)观测数据读取:RINEX、RTCM、NMEA、接收机原始数据

卫星导航定位都是通过对卫星观测以获得卫星所需的观测量来实现的,卫星发射的信号由载波测距码导航电文三部分组成,接收机通过接收处理卫星信号生成定位所需的观测量。RINEX 是的缩写。采用文本文件ASCII码存储数据。数据记录格式与接收机的制造厂商和具体型号无关,这样可以方便数据的传递,使数据尽可能多被使用。观测数据文件O导航信息文件N气象数据文件Meteorological Data File),本文主要介绍OBS和NAV文件的读取。文件结构都以节、记录、字段和列为单位逐级组织。

2024-12-11 10:00:00 1942

智能控制课后习题答案(18M)pdf完整版-最新.zip

智能控制课后答案(18M)pdf完整版-最新.zip 内容有18M,包含多个pdf文档,最新出炉,很全的

2025-05-27

基于主成分分析与支持向量机的人脸识别MATLAB实现项目源码+数据+文档说明及全部资料.zip

人脸识别 基于PCA和支持向量机的人脸识别 # 基于PCA和SVM的人脸识别系统设计文档 ## 项目概述 ### 项目简介 本项目是一个基于主成分分析(PCA)和支持向量机(SVM)的人脸识别系统。该系统采用经典的机器学习方法,通过PCA进行特征降维和提取,结合SVM分类器实现高效的人脸识别功能。 ### 技术特点 - **降维算法**:使用PCA(主成分分析)进行特征降维,提取人脸的主要特征 - **分类算法**:采用SVM(支持向量机)进行人脸分类识别 - **预处理**:包含人脸检测、图像标准化等预处理步骤 - **实时性**:支持实时人脸识别和批量图像处理 ## 系统架构 ### 整体架构图 ``` 输入图像 → 人脸检测 → 图像预处理 → PCA特征提取 → SVM分类器 → 识别结果 ↓ ↓ ↓ ↓ ↓ 原始数据 人脸定位 标准化处理 降维特征 身份预测 ``` ### 核心模块 #### 1. 数据预处理模块 - **功能**:图像读取、人脸检测、尺寸标准化 - **输入**:原始图像文件 - **输出**:标准化的人脸图像矩阵 - **关键技术**: - OpenCV Haar级联分类器进行人脸检测 - 图像灰度化处理 - 尺寸归一化(通常为64x64或128x128像素) #### 2. PCA特征提取模块 - **功能**:主成分分析,特征降维 - **核心算法**: - 计算训练集的均值脸(mean face) - 构建协方差矩阵 - 计算特征向量和特征值 - 选择前k个主成分作为特征基 - **输出**:低维特征向量 #### 3. SVM分类模块 - **功能**:训练分类器,执行人脸

2025-05-28

送货无人机比赛项目python源码资料-电子设计竞赛(含说明文档).zip

送货无人机比赛项目python源码资料-电子设计竞赛(含说明文档).zip 【项目文件说明】 文件与对应功能的说明 =========================================== ColorRecognition: 识别颜色 HulaHooping: 找到呼啦圈(识别圆形并调整舵机始终面向圆心) Line&Circle&Video: 巡线、定点起降(识别圆)、视频录制 pillar, pillar2: 绕杆 QRcode: 识别二维码 Shape&Circle_Density Method: 识别形状(采用占空比方法,通过有效像素个数占色块总像素数之比进行判断)、定点起降 Shape&Circle2: 识别形状(采用识别圆形和方形算法)、定点起降 ===========================================

2025-05-27

基于python实现CTF中web源码泄露扫描项目源码+说明文档(期末课程作业).zip

基于python实现CTF中web源码泄露扫描项目源码+说明文档(期末课程作业).zip 使用python的requests,功能比较简单,字典有待完善。 目前只支持php。 支持扫描类型 源码包 - www.zip code.tar.gz ... 敏感文件 - admin.php flag.php ... 敏感目录 - /admin /upload ... 编辑器源码备份 - xxx.php~ xxx.php.bak .xxx.php.swp .xxx.php.swo 扫描过程 对源码包进行扫描 对敏感文件进行扫描 对已知敏感文件进行源码备份扫描 对敏感目录进行扫描 对已知目录下的敏感文件进行扫描 再进行源码备份扫描 Usage 所有url必须以/结尾 python main.py -u [url] 独立 python main.py -f [file] 批量 Vim意外退出时会产生交换文件.swp .swo .swn 等; vim -r可恢复Vim交换文件 其他备份文件直接改后缀还原

2025-05-27

MPC模型预测控制器matlab实现源码+说明文档及全部资料.zip

MPC模型预测控制器matlab实现源码+说明文档及全部资料.zip 【项目简介】 优点 可以处理MIMO,而PID只能处理SISO,虽然可以使用多个PID控制多个变量,但当变量之间存在耦合时,PID参数的调节会很困难; 可以处理约束条件,由于模型预测控制是通过构建优化问题来求解控制器的动作的,所以可以非常自然的将这些约束建立在优化问题中以此来保证这些约束的满足。; 使用了未来的预测信息。 1.2. 缺点 要求强大的计算力,因为在每一个时间步都需要求解优化问题。 2. 参数设置 采样时间:设置为开环系统响应上升时间 10 预测区间:20~30个时间步 控制区间:预测区间的10%~20%,并且至少有2~3个时间步 约束条件:约束分为硬约束和软约束,硬约束不可违背,软约束可以违背。不建议对输入和输出都进行硬约束,因为两者可能冲突以致无法求解优化问题。建议将输 自适应MPC,增益调度MPC,非线性MPC 适用于处理非线性系统,其中自适应MPC和增益调度MPC的本质是将系统线性化 3.1. 自适应MPC(Adaptive MPC) 处理非线性系统时,在每个工作点附近对系统作线性化,得到一个新的线性模型,使用的前提是优化问题的结构在每个工作点不变,即在约束范围内,状态数量和约束数量不变。 3.2. 增益调度MPC(Gain-scheduled MPC) 优化问题的结构改变,可使用增益调度MPC。 离线线性化:在感兴趣工作点对系统进行线性化,并为每个感兴趣工作点设计一个线性MPC,每个线性MPC彼此独立,并且具有不同数量的状态和约束。 由于需要储存多个MPC控制器,因此消耗的内存比自适应MPC多。 3.3. 非线性MPC 无法很好的将非线性系统线性化的情况下使用非线性MPC。 控制会更加准确,求解会更加困难。

2025-05-27

机器学习作业基于ID3决策树实现患糖尿病可能性预测(python源码+数据集).zip

机器学习作业基于ID3决策树实现患糖尿病可能性预测(python源码+数据集).zip 【项目介绍】 关于患糖尿病可能性的预测 1.主要实验流程 获取数据集—->创建 ID3 决策树--->绘制决策树--->模型测试 if name == 'main': 获取数据集 dataSet, labels = getDataSet() featLabels = [] 创建 ID3 决策树 myTree = createTree(dataSet, labels, featLabels) 绘制决策树 createPlot(myTree) 模型测试 modelTest(myTree, featLabels)

2025-05-27

FreeRTOS实现的智能门锁系统+项目说明及全部资料(毕业设计).zip

FreeRTOS实现的智能门锁系统.zip 系统功能 主要功能部分: 解锁方式:支持输入密码解锁、手机蓝牙解锁、指纹解锁 保密方面:采用SHA-256计算 "序列号 + 时间戳" 的哈希值 用户体验部分: 当按下对应按键时相应位置的LED背光灯可以提示用户按下 当解锁成功或失败时有相应的语音进行提示 当需要更新固件时,可以通过连接WIFI来进行固件的OTA在线升级 快速开始 软件部分:vscode + ESP-IDF插件 + 配置ESP-IDF扩展 ESP-IDF v5.3.1 硬件部分:esp32-c3 + SC12B + WTN6210914 + 电机任意(模拟开锁) + FPM383C +

2025-05-24

课设基于JavaScript+vue的前端异常监控系统(异常收集、上报、分析等).zip

课设基于JavaScript+vue的前端异常监控系统(异常收集、上报、分析等).zip 一个前端异常监控系统,可以收集系统捕获的异常和手动上报的数据,包括 JavaScript 异常、HTTP 接口异常、静态资源加载异常、未处理的 Promise 异常等。该系统提供了控制台项目、接口服务项目、定时任务项目等多个组件,可以满足异常分析、浏览器设备占比分析、地区分析、操作系统分析、屏幕大小占比分析等需求。 主要功能点 自动捕获 JavaScript 异常、HTTP 接口异常、静态资源加载异常、未处理的 Promise 异常等 提供手动上报日志、警告、异常等功能 提供控制台项目、接口服务项目、定时任务项目等多个组件 支持异常分析、设备分析、地区分析、操作系统分析、屏幕大小占比分析等 技术栈 前端: Vue.js、Vuex、Vue Router、Element UI、Echarts 等 后端: Koa2、TypeScript、MySQL、Redis、Sequelize、JWT、PM2 等 部署: 支持开发、测试、预发布、生产等多个环境

2025-05-23

基于Spark Streaming的实时流处理系统+数据(含日志分析、舆情词频统计、用户行为统计、网站安全实时监控报警系统).zip

这个项目是一个基于Spark Streaming的实时流处理系统,主要包括以下四个功能模块: 日志分析系统 舆情管控系统之实时词频统计处理子系统(包括中文分词服务器) 网站用户行为统计系统(只统计用户行为,建模预测后期实现) 网站安全实时监控报警系统 主要功能点 日志分析:利用Spark SQL筛选出所有的错误日志,并将其存储到数据库中 实时词频统计:对输入的文本进行中文分词,统计单词出现的频率,并将结果存储到数据库 用户行为统计:收集并统计网站用户的行为数据,为后期的建模和预测做准备 实时监控报警:对网站的安全状况进行实时监控,并在发现异常时及时报警 技术栈 Scala Spark Streaming Spark SQL 中文分词服务器

2025-05-23

60个Linux常用命令学习汇总-学习必备.zip

60个Linux常用命令学习汇总-学习必备.zip 3.[options]主要参数 -m, --mode=模式:设定权限<模式>;,与chmod类似。 -p, --parents:需要时创建上层目录;如果目录早已存在,则不当作错误。 -v, --verbose:每次创建新目录都显示信息。 --version:显示版本信息后离开。 4.应用实例 在进行目录创建时可以设置目录的权限,此时使用的参数是“-m”。假设要创建的目录名是“tsk”,让所有用户都有rwx(即读、写、执行的权限),那么可以使用以下命令: $ mkdir -m 777 tsk grep 1.作用 grep命令可以指定文件中搜索特定的内容,并将含有这些内容的行标准输出。grep全称是Global Regular Expression Print,表示全局正则表达式版本,它的使用权限是所有用户。

2025-05-22

Linux常用的60个命令(初学者必备).zip

Linux常用的60个命令(初学者必备).zip Linux系统信息存放在文件里,文件与普通的公务文件类似。每个文件都有自己的名字、内容、存放地址及其它一些管理信息,如文件的用户、文件的大小等。文件可以是一封信、一个通讯录,或者是程序的源语句、程序的数据,甚至可以包括可执行的程序和其它非正文内容。 Linux文件系统具有良好的结构,系统提供了很多文件处理程序。这里主要介绍常用的文件处理命令。

2025-05-22

anaconda基础详细使用教程pdf和md.zip

anaconda基础详细使用教程pdf和md.zip 详细的anaconda使用教程,小白初学者适合下载使用

2025-05-22

深度学习肝脏肿瘤医学分割系统-基于TransUnet、SwinUnet实现python源码+数据集+预训练模型(可自己训练测试).zip

深度学习肝脏肿瘤医学分割系统-基于TransUnet、SwinUnet实现python源码+数据集+预训练模型(可自己训练测试) "2024第九届全国大学生生物医学工程创新设计竞赛"的获奖作品。它主要针对肝细胞癌患者的CT图像进行肿瘤分割,解决了部分标注导致的肿瘤表征不一致问题,以及小病灶难以检测的问题。

2025-05-21

基于python+opencv+CNN实现中文手势识别系统源码+模型+运行说明(含手势数据采集、数据预处理、模型训练和手势识别).zip

基于python+opencv+CNN实现中文手势识别系统源码+模型+运行说明(含手势数据采集、数据预处理、模型训练和手势识别).zip 【项目介绍】 1.图像搜集 collect_imgs.py 用于采集个人手势数据,会自动调用系统摄像头进行采集 2.数据准备 create_dataset.py 这段代码的主要用途是从一组手部图像中提取手部关键点特征,并将这些特征与对应的标签(手势类别)一起保存到一个pickle文件中,为后续的手势识别模型训练准备数据。 3.模型训练 CNN_train.py训练一个神经网络模型,通过手部关键点坐标数据识别不同手势类别 特点: 使用数据增强提升模型泛化能力 引入对抗训练(FGM)增强模型鲁棒性 完整的评估体系与可视化工具 (用于毕设数据支撑) 4.识别 test.py用于手势识别 【资源详情说明】 【1】该项目为近期精心打造开发,完整代码。同时,配套资料一应俱全,涵盖详细的设计文档 【2】项目上传前源码经过严格测试,在多种环境下均能稳定运行,功能完善且稳定运行,技术研究、教学演示还是项目实践,都能轻松复现,节省时间和精力。 【3】本项目面向计算机相关专业领域的各类人群,对于高校学生,可作为毕业设计、课程设计、日常作业的优质参考;对于科研工作者和行业从业者,可作为项目初期立项演示,助力快速搭建原型,验证思路。 【4】若具备一定技术基础,可在此代码上进行修改,以实现其他功能,也可直接用于毕设、课设、

2025-05-20

基于C++和CV的手语实时识别系统CPP源码+exe可执行文件.zip

基于C++和CV的手语实时识别系统CPP源码+exe可执行文件.zip

2025-05-20

信号分类-基于CNN网络的UWB NLOS信号分类器项目python源码+数据集+模型+运行教程及全部资料.zip

信号分类-基于CNN网络的UWB NLOS信号分类器项目python源码+数据集+模型+运行教程及全部资料 【项目说明】 这个项目是一个基于卷积神经网络的UWB NLOS信号分类器。它提供了一个完整的实验流程,包括数据集划分、模型训练和评估等。 【主要功能】 将原始数据集划分为训练集、验证集和测试集 实现了3种不同的卷积神经网络模型:CNN、FCN和ResNet 提供了激活函数和Dropout层的实验代码 包含了训练和测试的函数 【技术栈】 深度学习框架: PaddlePaddle 2.4.1 编程语言: Python 3.9.16

2025-05-19

基于OpenCV+python+html设计实现的手语识别系统毕设源码+项目说明+模型(含前端).zip

基于OpenCV+python+html设计实现的手语识别系统毕设源码+项目说明+模型(含前端) 基于 OpenCV 的手语识别系统,旨在提高非手语使用者与听障人士之间的沟通效率。该系统允许用户自定义手势字典,通过上传手势视频训练神经网络模型,实现个性化的手势识别。 主要功能 数据准备:用户上传手势视频,系统将其切割为帧并进行预处理。 模型训练:使用用户上传的视频数据训练神经网络模型。 模型优化:通过降噪算法提高模型的准确性和健壮性。 实时识别:用户通过摄像头展示手势,系统实时识别并输出结果。 模型选择:用户可选择预设模型或自定义模型。 提示功能:提供手势示例以帮助用户学习。 技术栈 计算机视觉:使用 OpenCV 进行图像处理和关键点检测 深度学习:采用神经网络模型进行手势识别 前端:HTML、CSS 和 JavaScript 构建用户界面 后端:Python (Flask) 处理数据和模型 数据库:MySQL 存储用户信息和模型数据 【资源说明】 【1】该项目为近期精心打造开发,完整代码。同时,配套资料一应俱全,涵盖详细的设计文档 【2】项目上传前源码经过严格测试,在多种环境下均能稳定运行,功能完善且稳定运行,技术研究、教学演示还是项目实践,都能轻松复现,节省时间和精力。 【3】本项目面向计算机相关专业领域的各类人群,对于高校学生,可作为毕业设计、课程设计、日常作业的优质参考;对于科研工作者和行业从业者,可作为项目初期立项演示,助力快速搭建原型,验证思路。 【4】若具备一定技术基础,可在此代码上进行修改,以实现其他功能,也可直接用于毕设、课设、

2025-05-16

高分毕设项目基于双流FasterR-CNN图像篡改检测系统源码+详细文档及说明(jupter运行).zip

高分毕设项目基于双流FasterR-CNN图像篡改检测系统源码+详细文档及说明(jupter运行).zip 【项目介绍】 主要功能 实现了基于双流 Faster R-CNN 网络的图像篡改检测 提供了预处理网络和训练好的模型,可以直接使用 提供了部署说明,包括环境依赖和运行异常处理 技术栈 Python TensorFlow Faster R-CNN 网络 资源详情说明】 【1】该项目为近期精心打造开发,完整代码。同时,配套资料一应俱全,涵盖详细的设计文档 【2】项目上传前源码经过严格测试,在多种环境下均能稳定运行,功能完善且稳定运行,技术研究、教学演示还是项目实践,都能轻松复现,节省时间和精力。 【3】本项目面向计算机相关专业领域的各类人群,对于高校学生,可作为毕业设计、课程设计、日常作业的优质参考;对于科研工作者和行业从业者,可作为项目初期立项演示,助力快速搭建原型,验证思路。 【4】若具备一定技术基础,可在此代码上进行修改,以实现其他功能,也可直接用于毕设、课设、

2025-05-16

网络安全APT分析报告:Linux系统下针对性的APT攻击概述.pdf

内容概要:本文主要介绍了针对Linux系统的高级持续性威胁(APT)攻击及其技术要点。文章翻译自卡巴斯基安全团队的报告,涵盖多个APT组织及其针对Linux系统的恶意软件,如Barium、Cloud Snooper、Equation、HackingTeam、Lazarus、Sofacy、The Dukes、Turla等。文中详细描述了这些组织的攻击手段和技术特征,包括恶意软件的功能、传播方式及隐蔽通信技术。此外,文章还提供了保护Linux系统的建议,如维护可信软件源、使用加密通信、设置防火墙、保护SSH密钥、监控网络活动日志、确保物理安全等。最后,作者表达了对未来安全研究的展望和对读者的支持。 适合人群:对网络安全有兴趣的技术人员,尤其是关注Linux系统安全的研究人员和安全从业者。 使用场景及目标:①了解针对Linux系统的APT攻击特点和技术手段;②掌握防范Linux系统APT攻击的具体措施;③提高对APT攻击的认识,增强系统防护能力。 其他说明:本文不仅提供了对APT攻击的深入分析,还结合实际案例和技术细节,帮助读者更好地理解和应对Linux系统下的安全威胁。此外,作者鼓励读者积极参与网络安全社区,共同提升安全意识和技术水平。

2025-05-16

网络安全APT分析报告:APT29利用spy软件供应商创建的IOS、Chrome漏洞.pdf

内容概要:本文详细分析了APT29黑客组织利用商业spy软件供应商创建的iOS和Chrome漏洞进行网络攻击的行为。APT29在2023年11月至2024年7月期间,利用CVE-2021-1879、CVE-2023-41993、CVE-2024-5274和CVE-2024-4671等漏洞,对蒙古等多个国家的政府网站进行了攻击。这些漏洞涉及WebKit跨站脚本、任意代码执行、V8类型混淆和Use-After-Free等问题,攻击者通过构造恶意网页和水坑战术,窃取受害者的敏感信息,如浏览器Cookie和密码。文章还探讨了APT29可能通过入侵或合作获取这些漏洞的方式,并强调了及时修补漏洞的重要性。 适合人群:对网络安全、APT攻击和漏洞利用感兴趣的中级到高级安全研究人员和技术爱好者。 使用场景及目标:①了解APT29的攻击手法及其使用的漏洞细节;②掌握iOS和Chrome浏览器的安全漏洞及其修复措施;③提高对商业spy软件供应商与APT组织关系的认识。 其他说明:文章来源于BleepingComputer,由作者Eastmount翻译并整理,旨在帮助读者理解APT29的攻击手段和防御策略。建议读者关注最新的安全补丁和更新,以防止类似攻击的发生。此外,欢迎加入作者的知识星球『网络攻防和AI安全之家』,获取更多安全技术和资源。

2025-05-16

使用python和OpenCV生成马赛克数据增强图像程序源码(适用yolo系列).zip

使用python和OpenCV生成马赛克数据增强图像程序源码(适用yolo系列) 生成马赛克数据增强图像 支持显示带有边界框的增强图像 Python OpenCV实现

2025-06-12

基于mnist数据集+pytorch搭建Lenet5的手写数字识别系统(源码+模型+数据+详细说明).zip

基于mnist数据集+pytorch搭建Lenet5的手写数字识别系统(源码+模型+数据+详细说明) 基于 MNIST 数据集的手写数字识别项目,使用 PyTorch 框架构建了 LeNet-5 卷积神经网络模型。该项目实现了手写数字的训练和预测功能。 主要功能 使用 MNIST 数据集进行手写数字识别 构建 LeNet-5 卷积神经网络模型 实现模型的训练和测试 支持自定义图片的手写数字预测 技术栈 Python 3.8 PyTorch 1.10.2

2025-06-08

基于Spark和Flask框架的在线电影推荐系统.zip

基于Spark和Flask框架的在线电影推荐系统.zip 主要功能 利用Spark实现基于协同过滤的电影推荐算法 使用Flask框架搭建Web应用程序 采用MongoDB数据库存储电影数据和用户评分信息 技术栈 Spark 1.5 Flask MongoDB

2025-06-08

课程设计基于matlab深度学习的音符识别系统(含源码+文档说明+数据).zip

课程设计基于matlab深度学习的音符识别系统(含源码+文档说明+数据).zip 【项目资源说明】 【1】该项目由团队近期开发,代码完整,资料齐全,含设计文档等 【2】上传的项目源码经过严格测试,功能完善且稳定运行,易复现 【3】本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 【4】如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 【5】小白不懂配置和运行,可远程指导及技术支持 欢迎下载学习,共同探讨与交流!

2025-06-08

基于二次规划的路径规划与MPC求解器项目源码+文档说明(课程设计).zip

基于二次规划的路径规划与MPC求解器项目源码+文档说明(课程设计).zip 基于 Python 的模型预测控制 (MPC) 库,用于求解二次规划 (QP) 问题。它支持线性时不变 (LTI) 和线性时变 (LTV) 系统,以及线性约束条件。该库主要用于原型设计,如果需要更高的性能,可以考虑其他替代方案。 主要功能 提供一个一站式的 solve_mpc() 函数,用于求解 MPC 问题 支持 LTI 和 LTV 系统,以及线性约束条件 提供了一个示例,演示如何定义和求解三阶积分器的 MPC 问题 技术栈 Python 数值计算库 (如 NumPy) 二次规划求解器 (如 ProxQP)

2025-06-08

期末大作业基于python+CNN网络的手写数字识别系统源码+数据+说明文档.zip

期末大作业基于python+CNN网络的手写数字识别系统源码+数据+说明文档.zip 【功能】 构建简单的卷积神经网络模型 训练和测试MNIST手写数字识别模型 将二进制存储的MNIST数据集转换为图片 该项目主要用于学习计算机视觉和熟悉PyTorch框架。目前已经完成了简单的模型构建、训练和测试,以及将二进制存储的数据集转换为图片的小工具。未来还计划添加一些可视化功能,并实践诸如AlexNet、VGG、GooLeNet和ResNet等常用视觉网络模型。

2025-06-08

基于深度学习的作物病害检测系统(本科课设作业).zip

基于深度学习的作物病害检测系统(本科课设作业).zip 基于深度学习的作物病害检测系统。它使用卷积神经网络(CNN)对作物叶子图像进行分类,以检测作物是否感染病害以及具体的病害类型。该项目包括以下主要功能点: 主要功能点 图像采集:从相机获取作物叶子图像,并使用白色背景进行拍摄以便于分析。 图像预处理:对获取的高分辨率图像进行缩放和归一化处理。 特征提取和选择:使用CNN层进行特征提取,并通过最大池化和dropout层进行特征选择。 模型训练:使用预训练的AlexNet模型权重初始化CNN层,并训练其他层以提高分类准确率。 图像分类:使用训练好的模型对作物叶子图像进行分类,识别是否感染病害以及具体的病害类型。 Web应用程序开发:使用Flask框架开发了一个简单的Web应用程序,用于展示模型的功能。 模型部署:将训练好的模型部署到Heroku服务器上,以便全球用户使用。

2025-06-08

课程设计-基于采用重心法和K-Means的麦当劳门店物流中心选址系统python源码+说明文档+数据.zip

课程设计-基于采用重心法和K-Means的麦当劳门店物流中心选址系统项目源码+说明文档+数据.zip 实验目的及任务 本实验为安信息与计算机学院运筹学实践课大作业,采用重心法和 k-means 聚类算法对安徽省内麦当劳店进行物流中心选址,指导老师:高羽佳老师。 实验时间为 2023 年 6 月 28 日。 收集数据 用重心法计算安徽省内最佳物流中心 用K-means法进行聚类分析 数据收集 收集安徽省内92家麦当劳经纬度数据,并把需要配送的需求量化为权重指标。 地址 经度 纬度 权重 麦当劳(合肥包河万达店) 117.310043 31.863634 8 麦当劳(合肥之心城店) 117.264324 31.859837 4 麦当劳(合肥天鹅湖万达店) 117.228255 31.827045 10 【功能】 收集安徽省内92家麦当劳店的经纬度和权重数据 使用单重心法计算安徽省内最佳物流中心坐标 使用K-means聚类算法对数据进行聚类分析,确定最佳聚类数目K=14 对14个聚类中心分别计算最佳物流中心坐标

2025-06-08

基于python机器学习开发的中文错别字检索自动纠正项目源码含GUI界面+演示视频+数据.zip

基于python机器学习开发的中文错别字检索自动纠正项目源码含GUI界面+演示视频 含数据+演示视频 【项目资源说明】 【1】该项目由团队近期开发,代码完整,资料齐全,含设计文档等 【2】上传的项目源码经过严格测试,功能完善且稳定运行,易复现 【3】本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 【4】如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 【5】小白不懂配置和运行,可远程指导及技术支持 欢迎下载学习,共同探讨与交流!

2025-06-06

用于实现形状记忆合金的热力学耦合本构模型ABAQUS子程序.zip

用于实现形状记忆合金的热力学耦合本构模型ABAQUS子程序.zip 项目是一个ABAQUS子程序,用于实现形状记忆合金的热力学耦合本构模型。该模型基于Lagoudas等人发表的工作,并进行了适当的修改,以考虑Hartl等人和Karakalas等人的相关研究成果。 主要功能 实现形状记忆合金的热力学耦合本构模型 考虑部分相变循环的影响 可用于ABAQUS有限元分析 技术栈 Fortran

2025-06-06

基于生成式对抗网络的书法字体生成项目(实战练习赛版)源码+文档说明及全部资料.zip

基于生成式对抗网络的书法字体生成项目(实战练习赛版)源码+文档说明及全部资料.zip 【功能】 使用条件对抗网络学习中文字体风格 引入标签混洗技术提高模型泛化能力 提供预处理脚本和训练/推理代码 【项目资源说明】 【1】该项目由团队近期开发,代码完整,资料齐全,含设计文档等 【2】上传的项目源码经过严格测试,功能完善且稳定运行,易复现 【3】本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 【4】如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 【5】小白不懂配置和运行,可远程指导及技术支持 欢迎下载学习,共同探讨与交流!

2025-06-05

基于PyQt6+python实现手写字体文本生成器源码带GUI界面+使用说明+exe可执行文件.zip

基于PyQt6+python实现手写字体文本生成器源码带GUI界面+使用说明+exe可执行文件.zip 【项目说明】 特点 实时预览: 在左侧配置效果参数时,右侧实时显示生成的手写文本图片,方便用户调整和查看效果。 自定义效果: 用户可以根据需要调整多种效果参数,以生成符合个人喜好或特定场景需求的手写文本图片。 方便易用: 使用直观的界面设计,使用户能够轻松上手,只需通过拖动滑块即可快速调整生成手写文本图片的效果。 多样化背景: 提供常见图片的同时,用户可以选择生成各种尺寸纯色背景,以满足不同设计和应用场景的需求。 个性化预设: 支持将参数保存为预设,避免多次重复的无意义调整参数 使用方法 配置效果参数: 打开 HandwritingGenerator,使用左侧的配置面板调整手写文本图片的效果参数。 实时预览: 在左侧配置的同时,右侧将实时显示生成的手写文本图片,以便用户可视化调整效果。 输出图片: 调整好效果参数后,点击导出按钮即可将生成的手写文本图片保存到本地。 运行; # 进入项目目录 cd HandwritingGenerator # 安装依赖 pip install PyQt6 # 运行应用 python main.py

2025-06-05

课程作业基于数字图像处理与SVC的花卉识别系统项目源码+文档说明+报告+数据.zip

课程作业基于数字图像处理与SVC的花卉识别系统项目源码+文档说明+报告.zip 【项目资源说明】 【1】该项目由团队近期开发,代码完整,资料齐全,含设计文档等 【2】上传的项目源码经过严格测试,功能完善且稳定运行,易复现 【3】本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 【4】如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 【5】小白不懂配置和运行,可远程指导及技术支持 欢迎下载学习,共同探讨与交流!

2025-06-05

基于matlab实现CNN卷积神经网络手写数字识别系统源码+数据集+实验报告.zip

基于matlab实现CNN卷积神经网络手写数字识别系统源码+数据集+实验报告.zip 一. 实验介绍 实验中总共尝试了三种结构的网络模型:无隐层神经网络,简单的带隐层的神经网络和带一层卷积池化的简单CNN,在普通神经网络中,更改隐层层数,在CNN中,又尝试了加入dropout算法和更改判别网络的隐藏层层数,看最后的结果有何不同。 二. 训练方法 在权值更新函数中统一采用SGD算法,使用60000个训练数据更新一轮权值。 三. 网络设计 1.无隐层网络 2.带隐层简单神经网络 2.1 单隐层 2.2 双隐层 3. CNN 特征提取网络都一致: 3.1 判别网络单隐层,区分使用dropout和不使用dropout方法 3.2 判别网络双隐层,未使用dropout 四. 实验结果 三类网络的实验结果如下: 1. 无隐层网络 运行时间: 准确率: 2.普通神经网络 2.1 单隐层 运行时间: 准确率: 2.2 双隐层 运行时间: 准确率: 3.CNN 3.1 判别网络单隐层 运行时间: 准确率: 3.2 判别网络单隐层+dropout 运行时间: 准确率: 3.3 判别网络双隐层 运行时间: 准确率: 五. 结果分析比较 令人惊奇的是,使用普通的神经网络就能获得比较高的正确率(最高92%左右)。 就简单的无隐层,单双隐层网络而言。单隐层网络的正确率(92%)高于无隐层(89.6%)的网络,这是复合预期的。但到了双隐层,正确率(90%)就有一定的下降,判断是因为参数设置的不合理,随着层数的增加,出现了过拟合。不过,在实验中加入dropout算法后,结果也没有变好。应该是隐层节点数设置的不合理。 在网络中加入卷积和池化层组成的特征提取网络之后,正确率最高可以达到(97.63%)。在单隐层中应用dropout算法之后,正确率(97.3

2025-06-05

基于MATLAB的卷积神经网络手写数字识别课程作业项目源码+文档说明及全部资料.zip

基于MATLAB的卷积神经网络手写数字识别课程作业项目源码+文档说明及全部资料.zip [项目说明] 深度学习导论课上的matlab实现卷积神经网络的代码,手写数字识别作业 含源码及实验报告 含数据集 【资源详情说明】 【1】该项目为近期精心打造开发,完整代码。同时,配套资料一应俱全,涵盖详细的设计文档 【2】项目上传前源码经过严格测试,在多种环境下均能稳定运行,功能完善且稳定运行,技术研究、教学演示还是项目实践,都能轻松复现,节省时间和精力。 【3】本项目面向计算机相关专业领域的各类人群,对于高校学生,可作为毕业设计、课程设计、日常作业的优质参考;对于科研工作者和行业从业者,可作为项目初期立项演示,助力快速搭建原型,验证思路。 【4】若具备一定技术基础,可在此代码上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 【5】小白,在配置环境或运行项目时遇到困难,可提供远程指导和全方位技术支持。

2025-06-05

基于MATLAB的潮流计算优化程序源码+文档说明及全部资料(近期开发).zip

基于MATLAB的潮流计算优化程序源码+文档说明及全部资料.zip 一个电力流优化程序。它提供了一个基于MATLAB的优化框架,用于解决电力系统中的潮流优化问题。该程序支持多种测试案例,并提供了可视化结果的功能。 主要功能点 电力系统潮流优化建模 多种测试案例支持 优化结果可视化 技术栈 MATLAB

2025-06-02

基于JavaEE的机票预订网站+说明文档+数据库sql.zip

基于JavaEE的机票预订网站+说明文档+数据库sql.zip 基于 Java Web 的机票预订网站项目。该项目提供了管理员和用户两种角色的功能,包括管理员登录、添加航班、查看订单和用户信息等管理功能,以及用户登录注册、搜索航班、预订机票、查看订单等用户功能。 主要功能点 管理员功能: 管理员登录 添加航班 查看航班列表 查看订单 查看用户信息 消息管理 用户功能: 用户登录注册 搜索航班 预订机票 查看订单 消息板

2025-06-03

基于MATLAB的IEEE 39 节点电力系统潮流计算项目源码+文档+运行说明+数据.zip

基于MATLAB的IEEE 39 节点电力系统潮流计算项目源码+文档+运行说明+数据.zip 环境要求 | Requirements MATLAB R2022b 或更高版本 | or newer Excel/WPS 文件支持 | Excel/WPS support 运行步骤 | Execution Steps 下载 项目内容 打开 MATLAB,进入项目目录 打开 IEEE_39_Node_Flow.m 文件并运行 线路潮流计算结果 | Branch Power Flow Results ==================== 线路、支路潮流计算结果 ==================== | 起点 | 终点 | 入端功率 (MW) | 出端功率 (MW) | 功率损耗 (MW) | --------------------------------------------------------------- | 1 | 2 | -186.5152 | 187.6936 | 1.1784 | | 1 | 39 | 186.5152 | -186.1785 | 0.3367 | | 2 | 3 | 313.8536 | -312.2909 | 1.5627 | 节点潮流计算结果 | Node Power Flow Results ==================== 节点潮流计算结果 ==================== | 节点 | 类型 | 发电功率 (MW) | 负荷功率 (MW) | 电压幅值 (p.u) | 相位角 (°) | --------------------------------------------

2025-06-02

基于迁移学习的Python水表读数检测系统源码+文档说明及全部资料+模型.zip

基于迁移学习的Python水表读数检测系统源码+文档说明及全部资料+模型.zip 【资源说明】 【1】该项目为近期精心打造开发,完整代码。同时,配套资料一应俱全,涵盖详细的设计文档 【2】项目上传前源码经过严格测试,在多种环境下均能稳定运行,功能完善且稳定运行,技术研究、教学演示还是项目实践,都能轻松复现,节省时间和精力。 【3】本项目面向计算机相关专业领域的各类人群,对于高校学生,可作为毕业设计、课程设计、日常作业的优质参考;对于科研工作者和行业从业者,可作为项目初期立项演示,助力快速搭建原型,验证思路。 【4】若具备一定技术基础,可在此代码上进行修改,以实现其他功能,也可直接用于毕设、课设、

2025-05-29

基于OpenCV的YOLOP全景驾驶感知系统(C++Python实现)源码+文档说明及全部资料.zip

基于OpenCV的YOLOP全景驾驶感知系统(C++Python实现)源码+文档说明及全部资料.zip ### 1.2 项目特点 - **零深度学习框架依赖**:仅依赖OpenCV库即可运行,摆脱了对PyTorch、TensorFlow等深度学习框架的依赖 - **双语言支持**:提供C++和Python两种版本的完整实现 - **高效多任务处理**:单一网络同时完成三项感知任务,节省计算资源 - **实时性能**:在嵌入式设备上达到实时推理速度 - **易于部署**:基于ONNX模型格式,便于跨平台部署 ## 2. 技术架构 ### 2.1 核心技术栈 - **推理引擎**:OpenCV DNN模块 - **模型格式**:ONNX(Open Neural Network Exchange) - **编程语言**:C++ / Python - **图像处理**:OpenCV计算机视觉库 - **数据集**:基于BDD100K自动驾驶数据集训练 ### 2.2 网络架构 YOLOP采用编码器-解码器架构: - **共享编码器**:用于特征提取的骨干网络 - **三个专用解码器头**: - 目标检测头:基于YOLO架构检测车辆、行人、交通标志等 - 可驾驶区域分割头:分割道路可行驶区域 - 车道线检测头:检测和分割车道标线 ### 2.3 模型性能指标 - **准确性**:在BDD100K数据集上达到state-of-the-art性能 - **速度**:在嵌入式设备上实现实时推理 - **效率**:多任务联合学习,相比单独训练三个模型显著提升效率 ## C++版本编译和运行 ### 1. 编译程序(Linux/Mac) ```bash # 方法一:直接编译 g++ -std=c++11 main.cpp -o yolop_demo \ `pkg

2025-05-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除