简介
pylab总结了numpy和pyplot一些常用的函数,运用起来能够更加得心应手.下面是对pylab模块内的一些函数的参数进行说明
说明
pylab的常用名为pl,我们在导入该模块应该这么写
import pylab as pl
如果我们要绘制折线图 或者 曲线图时
我们就需要利用pylot模块内的plot函数
举个简单的例子
import pylab as pl
x=pl.arange(0,4,0.1)#x的取值范围为(0,3]
y=x#对应的y的变化
pl.plot(x,y)
pl.show()
输出结果:
就这样,我们轻松的实现了y=x的函数图像,是不是很简单呢?接下来我要具体介绍一下pylot内部参数的含义.
**
plot()函数的使用说明
**
接着上个例子,我们发现,plot的前两个参数接受的是两个序列,是通过序列的变化而打印出图像的
如果我们想要实现散点图我们该如何做呢?
就像这样
其实这样修改并不难,我们只需要在plot函数内最后一个参数加上’o’
import pylab as pl
x=pl.arange(0,4,0.1)
y=x
pl.plot(x,y,'o')
pl.show()
如果我们想更改线的颜色我们可以这么改写,’r-’
‘r’代表red,’-‘代表实线
对应我们还有很多选择
想比这样我们还可以直接对plot的参数进行更改
import pylab as pl
x=pl.arange(0,4)
y=x
pl.plot(x,y,linestyle='--',marker='*',color='red',linewidth=2)
pl.show()
linestyle 线条种类
marker 折点
color 颜色
linewidth 线条宽度(越大越粗)
label 该线条的标签,需要legend函数定位才能显示
**
legend()函数:
**
这个函数有一个参数loc,用来定位你要将标签放到哪
用一个例子来简单说明
import pylab as pl
x=pl.arange(0,4)
y=x
pl.plot(x,y,linestyle='--',marker='',color='red',linewidth=2,label='line1')
pl.legend(loc='upper left')
pl.show()
输出结果
该图像的线条标签就被我们标记在左上角了
**
subplot函数
**
如果我们想创建多个函数图像,我们该如何去做呢?
我们需要利用subplot这个函数
这个函数我们该如何使用呢,我们通过一个实例你就能理解
如果我们想创建一个两个并排的,我们该如何做呢
pl.subplot(211)
该函数有三个参数,第一个参数为你要是实现的行数,一共两行,所以我们写2,第二个参数为列数,我们想实现的为一列,我们就写1,那第三个参数呢?第三个参数为该函数的标签,标记接下来该写的是哪个图像
具体代码实现
import numpy as np
import pylab as pl
pl.figure(figsize=(100,8))
pl.subplot(211)
x1 = np.arange(0,2,0.01)
y1 = np.sin(4 * np.pi * x1) * np.exp(-5 * x1)
pl.plot(x1, y1,label='Line1')
pl.title('sin(4*Pi*x1)*e^(-5*x1)')
pl.xlabel('x1')
pl.ylabel('y1')
pl.legend(loc='upper left')
pl.subplot(212)
x2=np.arange(0,4,0.01)
y2=np.sin(x2*np.pi/2)
pl.plot(x2,y2,label='Line2',color='green',linewidth=2)
pl.title('sin(x)')
pl.xlabel('x2')
pl.ylabel('y2')
pl.legend(loc='upper left')
pl.show()
输出结果