笨人小白的温故知新——排序(1)

这次,我来分享一下我新学习的归并排序

1311:【例2.5】求逆序对


网上有很多大佬整理了归并排序,并且超级厉害的做了动图。就是这个大佬努力的老周排序——归并排序(Merge sort)

下面我想回顾总结一下我现在对归并排序的认识与理解,并且把它融入这道题中。

我对归并排序的认识:

void merge_sort(int a[], int l, int r)
{
    if (l >= r) return;

    int mid = l + r >> 1;
    merge_sort(a, l, mid);
    merge_sort(a, mid + 1, r);

    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (a[i] <= a[j]) tmp[k ++ ] = a[i ++ ];
        else tmp[k ++ ] = a[j ++ ];

    while (i <= mid) tmp[k ++ ] = a[i ++ ];
    while (j <= r) tmp[k ++ ] = a[j ++ ];

    for (i = l, j = 0; i <= r; i ++, j ++ ) a[i] = tmp[j];
}

这是一段归并排序的模板,由“反复调用merge_sort()函数”和“分治”的过程组成。

在讲述这两个部分之前,我要“前情提要”一下,在进行之前,请在你的脑海里,想像一串数组里的每一个元素被单独放在一个格子里。

(一)“反复调用merge_sort()函数”

1)拆分:这个作用就是将这个连在一起的数组,逐渐拆分成一个一个的小方块

2)按顺序重组:那么,已经无法再拆的时候,我们如何“浪子回头”,将这些方块重新按顺序拼在一起呢?这时,我们就要设置一个返回条件!也就是if (l >= r) return;

(二)分治过程

分治的过程就是把“对一大串数字进行排序”转换为“对一小部分数字分别进行排序后,再整块进行排序”。这样话可以缩短时间。

定义一个i和j,当作指针,将数组中的数字按照从小到大的顺序进行排序。(这一步我真的心里明白,但是心有余力不足,很难表述出来)

至于为什么会有两行while,那是因为,在排列的时候,会出现左边的几个数字会大于右边的数字,导致右边都进行完了,而左边还会剩下数字(同理,右边也会剩下数字)。


而这道题,则是在归并排序的基础上,多加了一个计数的过程。

那么,现在要考虑的问题有2个:

question1:这个计数sum要加在哪里?

question2:计数运算是怎样的?

第一个问题很好解决,sum肯定要加在出现a[i] > a[j]的情况下面。

第二个问题就需要结合分治的过程,确定这个sum怎么加。因为每一整块都进行过排序,所以,只要发现一个a[i] > a[j] , 在i+1······mid之间的数字都会大于a[j] ,所以要加上mid - i + 1 。

下面献上这道题的AC代码:

#include <iostream>
#include <algorithm>
#include <stdio.h>
using namespace std ;
long long sum = 0 ;
int tmp[100005] ;
void merge_sort(int q[] , int l , int r){
	if(l >= r)	return ;
	int mid = l+r>>1 ;
	merge_sort(q,l,mid) ;
	merge_sort(q,mid+1,r) ;
	int i = l , j = mid+1 , k = 0 ;
	while(i <= mid && j <= r){
		if(q[i] <= q[j])	tmp[k++] = q[i++] ;
		else{
			tmp[k++] = q[j++] ;
			sum += mid - i + 1 ;
		}
	}
	while(i <= mid)	tmp[k++] = q[i++] ;
	while(j <= r)	tmp[k++] = q[j++] ;
	for(i = l , j = 0 ; i <= r ; i ++ , j ++)
		q[i] = tmp[j] ;
}
int main(){
	int n , a[100005]; scanf("%d" , &n) ;
	for(int i = 1 ; i <= n ; i ++)
		scanf("%d" , &a[i]) ;
	merge_sort(a , 1 , n) ;
	printf("%lld" , sum) ;
	return 0 ;
	
}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值