最优化方法——乘子法和外点罚函数法

此题摘自文件 最优化方法 第三章(乘子法) 13/24

【题目】分别用外点法乘子法求等式约束问题
m i n 1 2 x 1 2 + 1 6 x 2 2 s . t . x 1 + x 2 = 1 \mathrm{min} \quad \frac{1}{2}x^2_1+\frac{1}{6}x^2_2 \\ \mathrm{s.t.} \quad x_1+x_2=1 min21x12+61x22s.t.x1+x2=1
【解】(外点罚函数法)① 构造罚函数
F ( x , M k ) = 1 2 x 1 2 + 1 6 x 2 2 + M k ( x 1 + x 2 − 1 ) 2 F(x,M_k)=\frac{1}{2}x^2_1+\frac{1}{6}x^2_2+M_k(x_1+x_2-1)^2 F(x,Mk)=21x12+61x22+Mk(x1+x21)2
② 求偏导
∂ F ∂ x 1 = x 1 + 2 M k ( x 1 + x 2 − 1 ) = 0 (1) \frac{\partial F}{\partial x_1}=x_1+2M_k(x_1+x_2-1)=0 \tag{1} x1F=x1+2Mk(x1+x21)=0(1)

∂ F ∂ x 1 = 1 3 x 2 + 2 M k ( x 1 + x 2 − 1 ) = 0 (2) \frac{\partial F}{\partial x_1}=\frac{1}{3}x_2+2M_k(x_1+x_2-1)=0 \tag{2} x1F=31x2+2Mk(x1+x21)=0(2)

③ 联立两个偏导式,求驻点,并得到 x 1 x_1 x1 x 2 x_2 x2的表达式

联立 ( 1 ) (1) (1) ( 2 ) (2) (2),得到
x 2 = 3 x 1 (3) x_2=3x_1 \tag{3} x2=3x1(3)
( 3 ) (3) (3)代回 ( 1 ) (1) (1),得到
x 1 + 2 M k ( 4 x 1 − 1 ) = 0 ⇒ ( 1 + 8 M k ) x 1 = 2 M k ⇒ x 1 = 2 M k 1 + 8 M k \begin{aligned} x_1+2M_k(4x_1-1)&=0 \\ \Rightarrow (1+8M_k)x_1&=2M_k \\ \Rightarrow x_1&=\frac{2M_k}{1+8M_k} \end{aligned} x1+2Mk(4x11)(1+8Mk)x1x1=0=2Mk=1+8Mk2Mk
根据 ( 3 ) (3) (3),得到
x 2 = 3 x 1 = 6 M k 1 + 8 M k x_2=3x_1=\frac{6M_k}{1+8M_k} x2=3x1=1+8Mk6Mk
x 1 x_1 x1 x 2 x_2 x2的表达式改写为
x ∗ = [ 2 2 M k + 8 6 2 M k + 8 ] T (4) x^*=\begin{bmatrix} \frac{2}{\frac{2}{M_k}+8}&\frac{6}{\frac{2}{M_k}+8} \end{bmatrix}^\mathrm{T} \tag{4} x=[Mk2+82Mk2+86]T(4)
④ 令 M k → ∞ M_k \to \infty Mk,得到结果
x ∗ = [ 1 4 3 4 ] T x^*=\begin{bmatrix} \frac{1}{4}&\frac{3}{4} \end{bmatrix}^\mathrm{T} x=[4143]T
【总结】

解题步骤如下:

① 构造罚函数;

② 求出对 x 1 x_1 x1 x 2 x_2 x2的罚函数偏导;

③ 联立两个偏导式,求出驻点,并代回偏导式,得到 x 1 k x^k_1 x1k x 2 k x^k_2 x2k的表达式;

④ 令 M k M_k Mk趋近无穷,得到 x ∗ x^* x


【解】(乘子法)

① 写出增广Lagrange函数;
φ ( x , v k ) = 1 2 x 1 2 + 1 6 x 2 2 + v k ( x 1 + x 2 − 1 ) + c k 2 ( x 1 + x 2 − 1 ) 2 \varphi(x,v^k)=\frac{1}{2}x^2_1+\frac{1}{6}x^2_2+v^k(x_1+x_2-1)+\frac{c_k}{2}(x_1+x_2-1)^2 φ(x,vk)=21x12+61x22+vk(x1+x21)+2ck(x1+x21)2
② 用解析法求驻点;

∂ φ ∂ x 1 = x 1 + v k + c ( x 1 + x 2 − 1 ) = 0 (5) \frac{\partial \varphi}{\partial x_1} = x_1+v^k+c(x_1+x_2-1)=0 \tag{5} x1φ=x1+vk+c(x1+x21)=0(5)

∂ φ ∂ x 2 = 1 3 x 1 + v k + c ( x 1 + x 2 − 1 ) = 0 (6) \frac{\partial \varphi}{\partial x_2} = \frac{1}{3}x_1+v^k+c(x_1+x_2-1)=0 \tag{6} x2φ=31x1+vk+c(x1+x21)=0(6)

联立 ( 5 ) (5) (5) ( 6 ) (6) (6),得到
x 2 = 3 x 1 (7) x_2=3x_1 \tag{7} x2=3x1(7)
( 7 ) (7) (7)代入 ( 5 ) (5) (5)中,得到
x 1 + v k + c ( x 1 + 3 x 1 − 1 ) = 0 ⇒ ( 4 c + 1 ) x 1 + ( v k − c ) = 0 ⇒ x 1 = c − v k 4 c + 1 \begin{aligned} x_1+v^k+c(x_1+3x_1-1) &= 0 \\ \Rightarrow (4c+1)x_1+(v^k-c) &= 0 \\ \Rightarrow x_1 &= \frac{c-v^k}{4c+1} \end{aligned} x1+vk+c(x1+3x11)(4c+1)x1+(vkc)x1=0=0=4c+1cvk
那么, x 2 x_2 x2
x 1 = 3 ( c − v k ) 4 c + 1 x_1 = \frac{3(c-v^k)}{4c+1} x1=4c+13(cvk)
③ 根据乘子迭代公式求下一步的 v k + 1 v^{k+1} vk+1

根据乘子迭代公式,有
v k + 1 = v k + c ( x 1 + x 2 − 1 ) = v k + c ( 4 c − 4 v k 4 c + 1 + 4 c + 1 4 c + 1 ) = v k + c ( 1 + 4 v k 4 c + 1 ) \begin{aligned} v^{k+1} &= v^k+c(x_1+x_2-1) \\ & = v^k + c(\frac{4c-4v^k}{4c+1}+\frac{4c+1}{4c+1}) \\ & = v^k + c(\frac{1+4v^k}{4c+1}) \end{aligned} vk+1=vk+c(x1+x21)=vk+c(4c+14c4vk+4c+14c+1)=vk+c(4c+11+4vk)
c c c取任意值,解出 v k v^k vk的值;

c = 1 c=1 c=1,且 v k → ∞ v^k \to \infty vk,得到
v ∗ = v ∗ − 1 + 4 v ∗ 5 ⇒ v ∗ = − 0.25 \begin{aligned} v^* &= v^* - \frac{1+4v^*}{5} \\ \Rightarrow v^* &= -0.25 \end{aligned} vv=v51+4v=0.25
⑤ 将 c c c v k v^k vk代入点 x k x^k xk中,得出结果
x 1 k = 1 + 1 4 5 = 1 4 , x 2 k = 3 x 1 k = 3 4 x^k_1 = \frac{1+\frac{1}{4}}{5}=\frac{1}{4},\quad x^k_2 = 3x^k_1 = \frac{3}{4} x1k=51+41=41,x2k=3x1k=43

x ∗ = [ 1 4 3 4 ] T x^*=\begin{bmatrix} \frac{1}{4} & \frac{3}{4} \end{bmatrix}^\mathrm{T} x=[4143]T
【总结】

解题步骤如下:

① 写出增广Lagrange函数;

② 用解析法求驻点;

③ 根据乘子迭代公式求下一步的 v k + 1 v^{k+1} vk+1

c c c 取任意值,解出 v k v^k vk 的值;

⑤ 将 c c c v k v^k vk 代入点 x k x^k xk 中,得出结果。

  • 4
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值