最优化方法——乘子法和外点罚函数法

该博客详细介绍了如何使用外点罚函数法和拉格朗日乘子法解决等式约束的优化问题。通过构建罚函数和增广Lagrange函数,逐步求解驻点,最终得出相同的结果:(x1, x2) = (1/4, 3/4)。这种方法对于理解和应用最优化技术具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此题摘自文件 最优化方法 第三章(乘子法) 13/24

【题目】分别用外点法乘子法求等式约束问题
m i n 1 2 x 1 2 + 1 6 x 2 2 s . t . x 1 + x 2 = 1 \mathrm{min} \quad \frac{1}{2}x^2_1+\frac{1}{6}x^2_2 \\ \mathrm{s.t.} \quad x_1+x_2=1 min21x12+61x22s.t.x1+x2=1
【解】(外点罚函数法)① 构造罚函数
F ( x , M k ) = 1 2 x 1 2 + 1 6 x 2 2 + M k ( x 1 + x 2 − 1 ) 2 F(x,M_k)=\frac{1}{2}x^2_1+\frac{1}{6}x^2_2+M_k(x_1+x_2-1)^2 F(x,Mk)=21x12+61x22+Mk(x1+x21)2
② 求偏导
∂ F ∂ x 1 = x 1 + 2 M k ( x 1 + x 2 − 1 ) = 0 (1) \frac{\partial F}{\partial x_1}=x_1+2M_k(x_1+x_2-1)=0 \tag{1} x1F=x1+2Mk(x1+x21)=0(1)

∂ F ∂ x 1 = 1 3 x 2 + 2 M k ( x 1 + x 2 − 1 ) = 0 (2) \frac{\partial F}{\partial x_1}=\frac{1}{3}x_2+2M_k(x_1+x_2-1)=0 \tag{2} x1F=31x2+2Mk(x1+x21)=0(2)

③ 联立两个偏导式,求驻点,并得到 x 1 x_1 x1 x 2 x_2 x2的表达式

联立 ( 1 ) (1) (1) ( 2 ) (2) (2),得到
x 2 = 3 x 1 (3) x_2=3x_1 \tag{3} x2=3x1(3)
( 3 ) (3) (3)代回 ( 1 ) (1) (1),得到
x 1 + 2 M k ( 4 x 1 − 1 ) = 0 ⇒ ( 1 + 8 M k ) x 1 = 2 M k ⇒ x 1 = 2 M k 1 + 8 M k \begin{aligned} x_1+2M_k(4x_1-1)&=0 \\ \Rightarrow (1+8M_k)x_1&=2M_k \\ \Rightarrow x_1&=\frac{2M_k}{1+8M_k} \end{aligned} x1+2Mk(4x11)(1+8Mk)x1x1=0=2Mk=1+8Mk2Mk
根据 ( 3 ) (3) (3),得到
x 2 = 3 x 1 = 6 M k 1 + 8 M k x_2=3x_1=\frac{6M_k}{1+8M_k} x2=3x1=1+8Mk6Mk
x 1 x_1 x1 x 2 x_2 x2的表达式改写为
x ∗ = [ 2 2 M k + 8 6 2 M k + 8 ] T (4) x^*=\begin{bmatrix} \frac{2}{\frac{2}{M_k}+8}&\frac{6}{\frac{2}{M_k}+8} \end{bmatrix}^\mathrm{T} \tag{4} x=[Mk2+82Mk2+86]T(4)
④ 令 M k → ∞ M_k \to \infty Mk,得到结果
x ∗ = [ 1 4 3 4 ] T x^*=\begin{bmatrix} \frac{1}{4}&\frac{3}{4} \end{bmatrix}^\mathrm{T} x=[4143]T
【总结】

解题步骤如下:

① 构造罚函数;

② 求出对 x 1 x_1 x1 x 2 x_2 x2的罚函数偏导;

③ 联立两个偏导式,求出驻点,并代回偏导式,得到 x 1 k x^k_1 x1k x 2 k x^k_2 x2k的表达式;

④ 令 M k M_k Mk趋近无穷,得到 x ∗ x^* x


【解】(乘子法)

① 写出增广Lagrange函数;
φ ( x , v k ) = 1 2 x 1 2 + 1 6 x 2 2 + v k ( x 1 + x 2 − 1 ) + c k 2 ( x 1 + x 2 − 1 ) 2 \varphi(x,v^k)=\frac{1}{2}x^2_1+\frac{1}{6}x^2_2+v^k(x_1+x_2-1)+\frac{c_k}{2}(x_1+x_2-1)^2 φ(x,vk)=21x12+61x22+vk(x1+x21)+2ck(x1+x21)2
② 用解析法求驻点;

∂ φ ∂ x 1 = x 1 + v k + c ( x 1 + x 2 − 1 ) = 0 (5) \frac{\partial \varphi}{\partial x_1} = x_1+v^k+c(x_1+x_2-1)=0 \tag{5} x1φ=x1+vk+c(x1+x21)=0(5)

∂ φ ∂ x 2 = 1 3 x 1 + v k + c ( x 1 + x 2 − 1 ) = 0 (6) \frac{\partial \varphi}{\partial x_2} = \frac{1}{3}x_1+v^k+c(x_1+x_2-1)=0 \tag{6} x2φ=31x1+vk+c(x1+x21)=0(6)

联立 ( 5 ) (5) (5) ( 6 ) (6) (6),得到
x 2 = 3 x 1 (7) x_2=3x_1 \tag{7} x2=3x1(7)
( 7 ) (7) (7)代入 ( 5 ) (5) (5)中,得到
x 1 + v k + c ( x 1 + 3 x 1 − 1 ) = 0 ⇒ ( 4 c + 1 ) x 1 + ( v k − c ) = 0 ⇒ x 1 = c − v k 4 c + 1 \begin{aligned} x_1+v^k+c(x_1+3x_1-1) &= 0 \\ \Rightarrow (4c+1)x_1+(v^k-c) &= 0 \\ \Rightarrow x_1 &= \frac{c-v^k}{4c+1} \end{aligned} x1+vk+c(x1+3x11)(4c+1)x1+(vkc)x1=0=0=4c+1cvk
那么, x 2 x_2 x2
x 1 = 3 ( c − v k ) 4 c + 1 x_1 = \frac{3(c-v^k)}{4c+1} x1=4c+13(cvk)
③ 根据乘子迭代公式求下一步的 v k + 1 v^{k+1} vk+1

根据乘子迭代公式,有
v k + 1 = v k + c ( x 1 + x 2 − 1 ) = v k + c ( 4 c − 4 v k 4 c + 1 + 4 c + 1 4 c + 1 ) = v k + c ( 1 + 4 v k 4 c + 1 ) \begin{aligned} v^{k+1} &= v^k+c(x_1+x_2-1) \\ & = v^k + c(\frac{4c-4v^k}{4c+1}+\frac{4c+1}{4c+1}) \\ & = v^k + c(\frac{1+4v^k}{4c+1}) \end{aligned} vk+1=vk+c(x1+x21)=vk+c(4c+14c4vk+4c+14c+1)=vk+c(4c+11+4vk)
c c c取任意值,解出 v k v^k vk的值;

c = 1 c=1 c=1,且 v k → ∞ v^k \to \infty vk,得到
v ∗ = v ∗ − 1 + 4 v ∗ 5 ⇒ v ∗ = − 0.25 \begin{aligned} v^* &= v^* - \frac{1+4v^*}{5} \\ \Rightarrow v^* &= -0.25 \end{aligned} vv=v51+4v=0.25
⑤ 将 c c c v k v^k vk代入点 x k x^k xk中,得出结果
x 1 k = 1 + 1 4 5 = 1 4 , x 2 k = 3 x 1 k = 3 4 x^k_1 = \frac{1+\frac{1}{4}}{5}=\frac{1}{4},\quad x^k_2 = 3x^k_1 = \frac{3}{4} x1k=51+41=41,x2k=3x1k=43

x ∗ = [ 1 4 3 4 ] T x^*=\begin{bmatrix} \frac{1}{4} & \frac{3}{4} \end{bmatrix}^\mathrm{T} x=[4143]T
【总结】

解题步骤如下:

① 写出增广Lagrange函数;

② 用解析法求驻点;

③ 根据乘子迭代公式求下一步的 v k + 1 v^{k+1} vk+1

c c c 取任意值,解出 v k v^k vk 的值;

⑤ 将 c c c v k v^k vk 代入点 x k x^k xk 中,得出结果。

<think>好的,我需要帮助用户了解如何在CSS中正确使用height: 100%。首先,得确认用户的需求,他们可能想让一个元素占满父容器的高度,但常常会遇到height: 100%不生效的问题。根据引用中的信息,比如引用4提到动画高度的问题可能涉及布局计算,这可能和父元素的高度设置有关。 首先,我应该解释height: 100%的基本用法,说明它依赖于父元素有明确的高度定义。比如父元素如果没有设置高度,子元素用百分比高度会失效。这时候可能需要设置html和body的高度100%,或者在父容器上指定固定高度。 然后,结合引用3中的例子,比如使用浮动元素和形状外边距,可能可以举一个实际布局的例子,展示如何正确应用height: 100%。比如创建一个全屏的区块,需要将html和body的高度设为100%,然后子元素继承。 接下来,要提到常见的问题,比如父元素高度未定义导致子元素百分比无效,这时候需要检查父元素的设置。可能还需要提到Flexbox或Grid布局,这些现代布局方法可以更灵活地控制高度,比如在Flex容器中,子元素设置height: 100%可能更有效。 另外,引用4提到动画高度的问题,虽然用户的问题不是动画,但可以提醒用户如果涉及动态改变高度,需要注意性能问题,比如使用transform代替height动画。不过这可能超出当前问题范围,但可以作为补充信息。 最后,给出示例代码,展示不同场景下的正确用法,包括视口单位vh作为替代方案,或者使用Flexbox布局来占据剩余空间。同时,总结注意事项,如父元素高度、浏览器兼容性等。 需要确保所有CSS属性和代码用正确的格式,行内公式用$...$,独立公式用$$...$$,不过在这个问题中可能不需要数学公式,但要注意代码块的正确标注。引用相关部分时在末尾添加引用标识,比如关于父元素高度的问题引用4中的布局计算说明。 可能还需要生成相关问题,帮助用户进一步学习,比如如何处理父元素高度未定义,或者如何实现响应式高度,或者Flexbox与百分比高度的结合使用。</think>### CSS中`height: 100%`的用法与示例 在CSS中,`height: 100%`用于设置元素的高度与其父容器的高度一致。但使用时需注意**父容器的明确高度定义**,否则可能因父容器高度未设置而导致失效[^4]。 #### 基础用法 1. **父容器需定义高度** 若父容器未设置高度,子元素的`height: 100%`将无效。例如: ```css .parent { height: 300px; /* 父容器必须定义高度 */ } .child { height: 100%; /* 子元素继承父容器高度 */ } ``` 2. **全屏布局示例** 若需要元素占满整个视口高度,需确保从根元素(`<html>`和`<body>`)开始逐层继承: ```css html, body { height: 100%; } .full-screen-section { height: 100%; background: #f0f0f0; } ``` #### 常见场景与解决方案 1. **父容器高度动态变化** 使用Flexbox或Grid布局可避免手动设置父容器高度: ```css .container { display: flex; min-height: 100vh; /* 视口高度 */ } .flex-child { height: 100%; /* 自动填充剩余空间 */ } ``` 2. **替代方案:视口单位(`vh`)** 若父容器高度复杂,可直接使用视口单位: ```css .element { height: 100vh; /* 直接占满视口高度 */ } ``` #### 注意事项 - **避免布局计算问题**:频繁操作`height`属性可能导致性能问题(如动画中),建议优先使用`transform`。 - **浏览器兼容性**:现代浏览器均支持百分比高度,但需确保文档类型声明正确(如`<!DOCTYPE html>`)。 #### 示例:经典布局 ```html <style> html, body { height: 100%; margin: 0; } .parent { height: 80%; background: #eee; display: flex; } .child { height: 100%; width: 50%; background: #fd987d; /* 引用示例中的渐变色 */ } </style> <div class="parent"> <div class="child"></div> </div> ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值